Rational motivic path spaces and Kim’s relative unipotent section conjecture
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 117-172.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
We develop the foundations of commutative algebra objects in the category of motives, which we call “motivic dga’s.” Works of White and Cisinski and Déglise provide us with a suitable model structure. This enables us to reconstruct the unipotent fundamental group of a pointed scheme from the associated augmented motivic dga and provides us with a factorization of Kim’s relative unipotent section conjecture into several smaller conjectures with a homotopical flavor.
@article{RSMUP_2022__148__117_0, author = {Dan-Cohen, Ishai and Schlank, Tomer M.}, title = {Rational motivic path spaces and {Kim{\textquoteright}s} relative unipotent section conjecture}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {117--172}, volume = {148}, year = {2022}, doi = {10.4171/rsmup/97}, mrnumber = {4542375}, zbl = {07673824}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/97/} }
TY - JOUR AU - Dan-Cohen, Ishai AU - Schlank, Tomer M. TI - Rational motivic path spaces and Kim’s relative unipotent section conjecture JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2022 SP - 117 EP - 172 VL - 148 UR - http://www.numdam.org/articles/10.4171/rsmup/97/ DO - 10.4171/rsmup/97 LA - en ID - RSMUP_2022__148__117_0 ER -
%0 Journal Article %A Dan-Cohen, Ishai %A Schlank, Tomer M. %T Rational motivic path spaces and Kim’s relative unipotent section conjecture %J Rendiconti del Seminario Matematico della Università di Padova %D 2022 %P 117-172 %V 148 %U http://www.numdam.org/articles/10.4171/rsmup/97/ %R 10.4171/rsmup/97 %G en %F RSMUP_2022__148__117_0
Dan-Cohen, Ishai; Schlank, Tomer M. Rational motivic path spaces and Kim’s relative unipotent section conjecture. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 117-172. doi : 10.4171/rsmup/97. http://www.numdam.org/articles/10.4171/rsmup/97/
Cité par Sources :