Bloch’s theorem for heat mappings
Rendiconti del Seminario Matematico della Università di Padova, Tome 147 (2022), pp. 91-109.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
In this paper we give a proof via the contraction mapping principle of a Bloch-type theorem for (normalised) heat Bochner–Takahashi -mappings, that is, mappings that are solutions of the heat equation, and which also satisfy a weak form of -quasiregularity. We also provide estimates from below for the radius of the univalent balls covered by this family of functions.
@article{RSMUP_2022__147__91_0, author = {Jean C. Cortissoz}, title = {Bloch{\textquoteright}s theorem for heat mappings}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {91--109}, volume = {147}, year = {2022}, doi = {10.4171/rsmup/92}, mrnumber = {4450785}, zbl = {1494.30041}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/92/} }
Jean C. Cortissoz. Bloch’s theorem for heat mappings. Rendiconti del Seminario Matematico della Università di Padova, Tome 147 (2022), pp. 91-109. doi : 10.4171/rsmup/92. http://www.numdam.org/articles/10.4171/rsmup/92/
Cité par Sources :