(Co)isotropic triples and poset representations
Rendiconti del Seminario Matematico della Università di Padova, Tome 146 (2021), pp. 57-162.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study triples of coisotropic or isotropic subspaces in symplectic vector spaces; in particular, we classify indecomposable structures of this kind. The classification depends on the ground field, which we assume only to be perfect and not of characteristic 2. Our work uses the theory of representations of partially ordered sets with (order reversing) involution; for (co)isotropic triples, the relevant poset is “2 + 2 + 2” consisting of three independent ordered pairs, with the involution exchanging the members of each pair.

A key feature of the classification is that any indecomposable (co)isotropic triple is either “split” or “non-split.” The latter is the case when the poset representation underlying an indecomposable (co)isotropic triple is itself indecomposable. Otherwise, in the “split” case, the underlying representation is decomposable and necessarily the direct sum of a dual pair of indecomposable poset representations; the (co)isotropic triple is a “symplectification.”

In the course of the paper we develop the framework of “symplectic poset representations,” which can be applied to a range of problems of symplectic linear algebra. The classification of linear Hamiltonian vector fields, up to conjugation, is an example; we briefly explain the connection between these and (co)isotropic triples.

Publié le :
DOI : 10.4171/rsmup/84
Classification : 15, 16, 53
@article{RSMUP_2021__146__57_0,
     author = {Herrmann, Christian and Lorand, Jonathan and Weinstein, Alan},
     title = {(Co)isotropic triples and poset representations},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {57--162},
     volume = {146},
     year = {2021},
     doi = {10.4171/rsmup/84},
     mrnumber = {4349652},
     zbl = {1482.37061},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/rsmup/84/}
}
TY  - JOUR
AU  - Herrmann, Christian
AU  - Lorand, Jonathan
AU  - Weinstein, Alan
TI  - (Co)isotropic triples and poset representations
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2021
SP  - 57
EP  - 162
VL  - 146
UR  - http://www.numdam.org/articles/10.4171/rsmup/84/
DO  - 10.4171/rsmup/84
LA  - en
ID  - RSMUP_2021__146__57_0
ER  - 
%0 Journal Article
%A Herrmann, Christian
%A Lorand, Jonathan
%A Weinstein, Alan
%T (Co)isotropic triples and poset representations
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2021
%P 57-162
%V 146
%U http://www.numdam.org/articles/10.4171/rsmup/84/
%R 10.4171/rsmup/84
%G en
%F RSMUP_2021__146__57_0
Herrmann, Christian; Lorand, Jonathan; Weinstein, Alan. (Co)isotropic triples and poset representations. Rendiconti del Seminario Matematico della Università di Padova, Tome 146 (2021), pp. 57-162. doi : 10.4171/rsmup/84. http://www.numdam.org/articles/10.4171/rsmup/84/

Cité par Sources :