Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary
Rendiconti del Seminario Matematico della Università di Padova, Tome 145 (2021), pp. 213-291.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
We introduce rigid syntomic cohomology for strictly semistable log schemes over a complete discrete valuation ring of mixed characteristic In case a good compactification exists, we compare this cohomology theory to Nekovář–Nizioł’s crystalline syntomic cohomology of the generic fibre. The main ingredients are a modification of Große-Klönne’s rigid Hyodo–Kato theory and a generalization of it for strictly semistable log schemes with boundary.
@article{RSMUP_2021__145__213_0, author = {Ertl, Veronika and Yamada, Kazuki}, title = {Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {213--291}, volume = {145}, year = {2021}, doi = {10.4171/rsmup/81}, mrnumber = {4261656}, zbl = {1478.14040}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/81/} }
TY - JOUR AU - Ertl, Veronika AU - Yamada, Kazuki TI - Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2021 SP - 213 EP - 291 VL - 145 UR - http://www.numdam.org/articles/10.4171/rsmup/81/ DO - 10.4171/rsmup/81 LA - en ID - RSMUP_2021__145__213_0 ER -
%0 Journal Article %A Ertl, Veronika %A Yamada, Kazuki %T Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary %J Rendiconti del Seminario Matematico della Università di Padova %D 2021 %P 213-291 %V 145 %U http://www.numdam.org/articles/10.4171/rsmup/81/ %R 10.4171/rsmup/81 %G en %F RSMUP_2021__145__213_0
Ertl, Veronika; Yamada, Kazuki. Comparison between rigid and crystalline syntomic cohomology for strictly semistable log schemes with boundary. Rendiconti del Seminario Matematico della Università di Padova, Tome 145 (2021), pp. 213-291. doi : 10.4171/rsmup/81. http://www.numdam.org/articles/10.4171/rsmup/81/
Cité par Sources :