A version of purity on local abelian groups
Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 159-176.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
In [6], generalizations of the standard notion of purity on -local abelian groups were defined using functorial methods to create injective resolutions. For example, if is a limit ordinal, then for a group the completion functor determines the notion of -purity. Another way of constructing a type of purity, called -purity, is defined using the functor . Properties of this second type of purity are studied; for example, it is shown to be hereditary if and only if has countable cofinality. In addition, and -purity are compared in a variety of contexts, for example, in the category of Warfield groups.
@article{RSMUP_2020__144__159_0, author = {Patrick W. Keef}, title = {A version of purity on local abelian groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {159--176}, volume = {144}, year = {2020}, doi = {10.4171/rsmup/63}, mrnumber = {4186453}, zbl = {1507.20034}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/63/} }
TY - JOUR AU - Patrick W. Keef TI - A version of purity on local abelian groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2020 SP - 159 EP - 176 VL - 144 UR - http://www.numdam.org/articles/10.4171/rsmup/63/ DO - 10.4171/rsmup/63 LA - en ID - RSMUP_2020__144__159_0 ER -
Patrick W. Keef. A version of purity on local abelian groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 159-176. doi : 10.4171/rsmup/63. http://www.numdam.org/articles/10.4171/rsmup/63/
Cité par Sources :