-covers over commutative rings
Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 27-43.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
In this paper we consider the class of modules of projective dimension at most one over a commutative ring and we investigate when is a covering class. More precisely, we investigate Enochs' Conjecture, that is the question of whether is covering necessarily implies that is closed under direct limits. We answer the question affirmatively in the case of a commutative semihereditary ring . This gives an example of a cotorsion pair which is not necessarily of finite type such that satisfies Enochs' Conjecture. Moreover, we describe the class over (not necessarily commutative) rings which admit a classical ring of quotients.
@article{RSMUP_2020__144__27_0, author = {Silvana Bazzoni and Giovanna Le Gros}, title = {$\mathcal P_1$-covers over commutative rings}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {27--43}, volume = {144}, year = {2020}, doi = {10.4171/rsmup/54}, mrnumber = {4186444}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/54/} }
TY - JOUR AU - Silvana Bazzoni AU - Giovanna Le Gros TI - $\mathcal P_1$-covers over commutative rings JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2020 SP - 27 EP - 43 VL - 144 UR - http://www.numdam.org/articles/10.4171/rsmup/54/ DO - 10.4171/rsmup/54 LA - en ID - RSMUP_2020__144__27_0 ER -
Silvana Bazzoni; Giovanna Le Gros. $\mathcal P_1$-covers over commutative rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 27-43. doi : 10.4171/rsmup/54. http://www.numdam.org/articles/10.4171/rsmup/54/
Cité par Sources :