The subject of this paper is an algebraic version of the irregular Riemann–Hilbert correspondence which was mentioned in [Tsukuba J. Math. 44 (2020), 155–201]. In particular, we prove an equivalence of categories between the triangulated category of holonomic -modules on a smooth algebraic variety over and the triangulated category $\mathbf{E}^{\mathrm{b}}_{\operatorname{\mathbb{C}-c}}( \mathrm{I}\mathbb{C}_{X_\infty})$ of algebraic -constructible enhanced ind-sheaves on a bordered space . Moreover, we show that there exists a t-structure on the triangulated category $\mathbf{E}^{\mathrm{b}}_{\operatorname{\mathbb{C}-c}}(\mathrm{I}\mathbb{C}_{X_\infty})$ whose heart is equivalent to the abelian category of holonomic -modules on . Furthermore, we shall consider simple objects of its heart and minimal extensions of objects of its heart.
@article{RSMUP_2023__149__45_0, author = {Ito, Yohei}, title = {Note on algebraic irregular {Riemann{\textendash}Hilbert} correspondence}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {45--81}, volume = {149}, year = {2023}, doi = {10.4171/rsmup/119}, mrnumber = {4575364}, zbl = {07688317}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/119/} }
TY - JOUR AU - Ito, Yohei TI - Note on algebraic irregular Riemann–Hilbert correspondence JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2023 SP - 45 EP - 81 VL - 149 UR - http://www.numdam.org/articles/10.4171/rsmup/119/ DO - 10.4171/rsmup/119 LA - en ID - RSMUP_2023__149__45_0 ER -
Ito, Yohei. Note on algebraic irregular Riemann–Hilbert correspondence. Rendiconti del Seminario Matematico della Università di Padova, Tome 149 (2023), pp. 45-81. doi : 10.4171/rsmup/119. http://www.numdam.org/articles/10.4171/rsmup/119/
Cité par Sources :