On Siegel’s problem for E-functions
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 83-115.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Siegel defined in 1929 two classes of power series, the E-functions and G-functions, which generalize the Diophantine properties of the exponential and logarithmic functions respectively. He asked whether any E-function can be represented as a polynomial with algebraic coefficients in a finite number of E-functions of the form p F q (λz q-p+1 ), qp1, with rational parameters. The case of E-functions of differential order less than or equal to 2 was settled in the affirmative by Gorelov in 2004, but Siegel's question is open for higher order. We prove here that if Siegel's question has a positive answer, then the ring 𝐆 of values taken by analytic continuations of G-functions at algebraic points must be a subring of the relatively “small” ring 𝐇 generated by algebraic numbers, 1/π and the values of the derivatives of the Gamma function at rational points. Because that inclusion seems unlikely (and contradicts standard conjectures), this points towards a negative answer to Siegel's question in general. As intermediate steps, we first prove that any element of 𝐆 is a coefficient of the asymptotic expansion of a suitable E-function, which completes previous results of ours. We then prove (in two steps) that the coefficients of the asymptotic expansion of a hypergeometric E-function with rational parameters are in 𝐇. Finally, we prove a similar result for G-functions.

Accepté le :
Publié le :
DOI : 10.4171/rsmup/107
Classification : 33, 11, 41
@article{RSMUP_2022__148__83_0,
     author = {Fischler, St\'ephane and Rivoal, Tanguy},
     title = {On {Siegel{\textquoteright}s} problem for $E$-functions},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {83--115},
     volume = {148},
     year = {2022},
     doi = {10.4171/rsmup/107},
     mrnumber = {4542374},
     zbl = {1512.33011},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/rsmup/107/}
}
TY  - JOUR
AU  - Fischler, Stéphane
AU  - Rivoal, Tanguy
TI  - On Siegel’s problem for $E$-functions
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2022
SP  - 83
EP  - 115
VL  - 148
UR  - http://www.numdam.org/articles/10.4171/rsmup/107/
DO  - 10.4171/rsmup/107
LA  - en
ID  - RSMUP_2022__148__83_0
ER  - 
%0 Journal Article
%A Fischler, Stéphane
%A Rivoal, Tanguy
%T On Siegel’s problem for $E$-functions
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2022
%P 83-115
%V 148
%U http://www.numdam.org/articles/10.4171/rsmup/107/
%R 10.4171/rsmup/107
%G en
%F RSMUP_2022__148__83_0
Fischler, Stéphane; Rivoal, Tanguy. On Siegel’s problem for $E$-functions. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 83-115. doi : 10.4171/rsmup/107. http://www.numdam.org/articles/10.4171/rsmup/107/

Cité par Sources :