Convolution identities of poly-Cauchy numbers with level 2
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 245-262.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Poly-Cauchy numbers with level 2 are defined by inverse sine hyperbolic functions with the inverse relation from sine hyperbolic functions. In this paper, we introduce the Stirling numbers of the first kind with level 2 in order to establish some relations with poly- Cauchy numbers with level 2. Then, we show several convolution identities of poly-Cauchy numbers with level 2. In particular, that of three poly-Cauchy numbers with level 2 can be expressed as a simple form.

Accepté le :
Publié le :
DOI : 10.4171/rsmup/106
Classification : 11, 05
@article{RSMUP_2022__148__245_0,
     author = {Takao Komatsu},
     title = {Convolution identities of {poly-Cauchy} numbers with level 2},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {245--262},
     volume = {148},
     year = {2022},
     doi = {10.4171/rsmup/106},
     mrnumber = {4542380},
     zbl = {07673829},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/rsmup/106/}
}
TY  - JOUR
AU  - Takao Komatsu
TI  - Convolution identities of poly-Cauchy numbers with level 2
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2022
SP  - 245
EP  - 262
VL  - 148
UR  - http://www.numdam.org/articles/10.4171/rsmup/106/
DO  - 10.4171/rsmup/106
LA  - en
ID  - RSMUP_2022__148__245_0
ER  - 
%0 Journal Article
%A Takao Komatsu
%T Convolution identities of poly-Cauchy numbers with level 2
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2022
%P 245-262
%V 148
%U http://www.numdam.org/articles/10.4171/rsmup/106/
%R 10.4171/rsmup/106
%G en
%F RSMUP_2022__148__245_0
Takao Komatsu. Convolution identities of poly-Cauchy numbers with level 2. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 245-262. doi : 10.4171/rsmup/106. http://www.numdam.org/articles/10.4171/rsmup/106/

Cité par Sources :