Convolution identities of poly-Cauchy numbers with level 2
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 245-262.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Poly-Cauchy numbers with level 2 are defined by inverse sine hyperbolic functions with the inverse relation from sine hyperbolic functions. In this paper, we introduce the Stirling numbers of the first kind with level 2 in order to establish some relations with poly- Cauchy numbers with level 2. Then, we show several convolution identities of poly-Cauchy numbers with level 2. In particular, that of three poly-Cauchy numbers with level 2 can be expressed as a simple form.
@article{RSMUP_2022__148__245_0, author = {Takao Komatsu}, title = {Convolution identities of {poly-Cauchy} numbers with level 2}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {245--262}, volume = {148}, year = {2022}, doi = {10.4171/rsmup/106}, mrnumber = {4542380}, zbl = {07673829}, language = {en}, url = {http://www.numdam.org/articles/10.4171/rsmup/106/} }
TY - JOUR AU - Takao Komatsu TI - Convolution identities of poly-Cauchy numbers with level 2 JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2022 SP - 245 EP - 262 VL - 148 UR - http://www.numdam.org/articles/10.4171/rsmup/106/ DO - 10.4171/rsmup/106 LA - en ID - RSMUP_2022__148__245_0 ER -
Takao Komatsu. Convolution identities of poly-Cauchy numbers with level 2. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 245-262. doi : 10.4171/rsmup/106. http://www.numdam.org/articles/10.4171/rsmup/106/
Cité par Sources :