Magnificent four
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 4, pp. 505-534.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We present a statistical mechanical model whose random variables are solid partitions, i.e. Young diagrams built by stacking up four dimensional hypercubes. Equivalently, it can be viewed as the model of random tessellations of 𝐑 3 by squashed cubes of four fixed orientations. The model computes the refined index of a system of D0-branes in the presence of D8D8 ¯ system, with a B-field strong enough to support the bound states. Mathematically, it is the equivariant K-theoretic version of integration over the Hilbert scheme of points on 4 and its higher rank analogues, albeit the definition is real-, not complex analytic. The model is a mother of all random partition models, including the equivariant Donaldson–Thomas theory and the four dimensional instanton counting. Finally, a version of our model with infinite solid partitions with four fixed plane partition asymptotics is the vertex contribution to the equivariant count of instantons on toric Calabi–Yau fourfolds.

The conjectured partition function of the model is presented. We have checked it up to six instantons (which is one step beyond the checks of the celebrated P. MacMahon's failed conjectures of the early XX century). A specialization of the formula is our earlier (2004) conjecture on the equivariant K-theoretic Donaldson–Thomas theory, recently proven by A. Okounkov [63].

Accepté le :
Publié le :
DOI : 10.4171/aihpd/93
Classification : 05-XX, 81-XX
Mots-clés : Partitions, supersymmetry, localisation, gauge theory, M-theory
@article{AIHPD_2020__7_4_505_0,
     author = {Nekrasov, Nikita},
     title = {Magnificent four},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {505--534},
     volume = {7},
     number = {4},
     year = {2020},
     doi = {10.4171/aihpd/93},
     mrnumber = {4182774},
     zbl = {1454.05016},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/93/}
}
TY  - JOUR
AU  - Nekrasov, Nikita
TI  - Magnificent four
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 505
EP  - 534
VL  - 7
IS  - 4
UR  - http://www.numdam.org/articles/10.4171/aihpd/93/
DO  - 10.4171/aihpd/93
LA  - en
ID  - AIHPD_2020__7_4_505_0
ER  - 
%0 Journal Article
%A Nekrasov, Nikita
%T Magnificent four
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 505-534
%V 7
%N 4
%U http://www.numdam.org/articles/10.4171/aihpd/93/
%R 10.4171/aihpd/93
%G en
%F AIHPD_2020__7_4_505_0
Nekrasov, Nikita. Magnificent four. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 4, pp. 505-534. doi : 10.4171/aihpd/93. http://www.numdam.org/articles/10.4171/aihpd/93/

Cité par Sources :