Decompositions of amplituhedra
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 3, pp. 303-363.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The (tree) amplituhedron 𝒜 n,k,m is the image in the Grassmannian Gr k,k+m of the totally nonnegative Grassmannian Gr k,n 0 , under a (map induced by a) linear map which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for the computation of scattering amplitudes in planar 𝒩=4 supersymmetric Yang–Mills theory. In the case relevant to physics (m=4), there is a collection of recursively-defined 4k-dimensional BCFW cells in Gr k,n 0 , whose images conjecturally "triangulate" the amplituhedron – that is, their images are disjoint and cover a dense subset of 𝒜 n,k,4 . In this paper, we approach this problem by first giving an explicit (as opposed to recursive) description of the BCFW cells. We then develop sign-variational tools which we use to prove that when k=2, the images of these cells are disjoint in 𝒜 n,k,4 . We also conjecture that for arbitrary even m, there is a decomposition of the amplituhedron 𝒜 n,k,m involving precisely Mk , n - k - m , m 2 top-dimensional cells (of dimension km), where M(a,b,c) is the number of plane partitions contained in an a×b×c box. This agrees with the fact that when m=4, the number of BCFW cells is the Narayana number N n-3,k+1 =1 n-3n-3 k+1n-3 k.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/87
Classification : 05-XX, 14-XX, 15-XX, 81-XX
Mots-clés : Amplituhedron, scattering amplitude, totally nonnegative Grassmannian, BCFW recursion, Narayana number, plane partition
@article{AIHPD_2020__7_3_303_0,
     author = {Karp, Steven N. and Williams, Lauren K. and Zhang, Yan X},
     title = {Decompositions of amplituhedra},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {303--363},
     volume = {7},
     number = {3},
     year = {2020},
     doi = {10.4171/aihpd/87},
     mrnumber = {4152617},
     zbl = {1470.81048},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/87/}
}
TY  - JOUR
AU  - Karp, Steven N.
AU  - Williams, Lauren K.
AU  - Zhang, Yan X
TI  - Decompositions of amplituhedra
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 303
EP  - 363
VL  - 7
IS  - 3
UR  - http://www.numdam.org/articles/10.4171/aihpd/87/
DO  - 10.4171/aihpd/87
LA  - en
ID  - AIHPD_2020__7_3_303_0
ER  - 
%0 Journal Article
%A Karp, Steven N.
%A Williams, Lauren K.
%A Zhang, Yan X
%T Decompositions of amplituhedra
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 303-363
%V 7
%N 3
%U http://www.numdam.org/articles/10.4171/aihpd/87/
%R 10.4171/aihpd/87
%G en
%F AIHPD_2020__7_3_303_0
Karp, Steven N.; Williams, Lauren K.; Zhang, Yan X. Decompositions of amplituhedra. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 3, pp. 303-363. doi : 10.4171/aihpd/87. http://www.numdam.org/articles/10.4171/aihpd/87/

Cité par Sources :