Generalized chord diagram expansions of Dyson–Schwinger equations
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 4, pp. 573-605.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Series solutions for a large family of Dyson–Schwinger equations are given as expansions over decorated rooted connected chord diagrams. The analytic input to the new expansions are the expansions of the regularized integrals for the primitive graphs building the Dyson–Schwinger equation. Each decorated chord diagram contributes a weighted monomial in the coefficients of the expansions of the primitives and so indexes the analytic solution in a tightly controlled way.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/79
Publié le :
DOI : 10.4171/aihpd/79
Classification :
81-XX, 05-XX
Mots-clés : Dyson–Schwinger equations, chord diagrams, perturbative quantum field theory, generating functions
Mots-clés : Dyson–Schwinger equations, chord diagrams, perturbative quantum field theory, generating functions
@article{AIHPD_2019__6_4_573_0, author = {Hihn, Markus and Yeats, Karen}, title = {Generalized chord diagram expansions of {Dyson{\textendash}Schwinger} equations}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {573--605}, volume = {6}, number = {4}, year = {2019}, doi = {10.4171/aihpd/79}, mrnumber = {4033681}, zbl = {1432.81052}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/79/} }
TY - JOUR AU - Hihn, Markus AU - Yeats, Karen TI - Generalized chord diagram expansions of Dyson–Schwinger equations JO - Annales de l’Institut Henri Poincaré D PY - 2019 SP - 573 EP - 605 VL - 6 IS - 4 UR - http://www.numdam.org/articles/10.4171/aihpd/79/ DO - 10.4171/aihpd/79 LA - en ID - AIHPD_2019__6_4_573_0 ER -
Hihn, Markus; Yeats, Karen. Generalized chord diagram expansions of Dyson–Schwinger equations. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 4, pp. 573-605. doi : 10.4171/aihpd/79. http://www.numdam.org/articles/10.4171/aihpd/79/
Cité par Sources :