Local properties of the random Delaunay triangulation model and topological models of 2D gravity
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 313-355.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Delaunay triangulations provide a bijection between a set of N+3 points in generic position in the complex plane, and the set of triangulations with given circumcircle intersection angles. The uniform Lebesgue measure on these angles translates into a Kähler measure for Delaunay triangulations, or equivalently on the moduli space 0,N+3 of genus zero Riemann surfaces with N+3 marked points. We study the properties of this measure. First we relate it to the topological Weil–Petersson symplectic form on the moduli space 0,N+3 . Then we show that this measure, properly extended to the space of all triangulations on the plane, has maximality properties for Delaunay triangulations. Finally we show, using new local inequalities on the measures, that the volume 𝒱 N on triangulations with N+3 points is monotonically increasing when a point is added, NN+1. We expect that this can be a step towards seeing that the large N limit of random triangulations can tend to the Liouville conformal field theory.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/73
Classification : 05-XX, 35-XX, 52-XX, 60-XX
Mots-clés : Circle pattern, random maps, conformal invariance, Kähler geometry, 2D gravity, topological gravity, Teichmüller space
@article{AIHPD_2019__6_3_313_0,
     author = {Charbonnier, S\'everin and David, Fran\c{c}ois and Eynard, Bertrand},
     title = {Local properties of the random {Delaunay} triangulation model and topological models of {2D} gravity},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {313--355},
     volume = {6},
     number = {3},
     year = {2019},
     doi = {10.4171/aihpd/73},
     mrnumber = {4002669},
     zbl = {1426.52010},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/73/}
}
TY  - JOUR
AU  - Charbonnier, Séverin
AU  - David, François
AU  - Eynard, Bertrand
TI  - Local properties of the random Delaunay triangulation model and topological models of 2D gravity
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2019
SP  - 313
EP  - 355
VL  - 6
IS  - 3
UR  - http://www.numdam.org/articles/10.4171/aihpd/73/
DO  - 10.4171/aihpd/73
LA  - en
ID  - AIHPD_2019__6_3_313_0
ER  - 
%0 Journal Article
%A Charbonnier, Séverin
%A David, François
%A Eynard, Bertrand
%T Local properties of the random Delaunay triangulation model and topological models of 2D gravity
%J Annales de l’Institut Henri Poincaré D
%D 2019
%P 313-355
%V 6
%N 3
%U http://www.numdam.org/articles/10.4171/aihpd/73/
%R 10.4171/aihpd/73
%G en
%F AIHPD_2019__6_3_313_0
Charbonnier, Séverin; David, François; Eynard, Bertrand. Local properties of the random Delaunay triangulation model and topological models of 2D gravity. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 313-355. doi : 10.4171/aihpd/73. http://www.numdam.org/articles/10.4171/aihpd/73/

Cité par Sources :