Uniqueness of the infinite noodle
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 221-238.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Consider the graph obtained by superposition of an independent pair of uniform infinite non-crossing perfect matchings of the set of integers. We prove that this graph contains at most one infinite path. Several motivations are discussed.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/70
Publié le :
DOI : 10.4171/aihpd/70
Classification :
60-XX, 05-XX
Mots-clés : Infinite cluster, random matching
Mots-clés : Infinite cluster, random matching
@article{AIHPD_2019__6_2_221_0, author = {Curien, Nicolas and Kozma, Gady and Sidoravicius, Vladas and Tournier, Laurent}, title = {Uniqueness of the infinite noodle}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {221--238}, volume = {6}, number = {2}, year = {2019}, doi = {10.4171/aihpd/70}, mrnumber = {3950654}, zbl = {1478.60256}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/70/} }
TY - JOUR AU - Curien, Nicolas AU - Kozma, Gady AU - Sidoravicius, Vladas AU - Tournier, Laurent TI - Uniqueness of the infinite noodle JO - Annales de l’Institut Henri Poincaré D PY - 2019 SP - 221 EP - 238 VL - 6 IS - 2 UR - http://www.numdam.org/articles/10.4171/aihpd/70/ DO - 10.4171/aihpd/70 LA - en ID - AIHPD_2019__6_2_221_0 ER -
%0 Journal Article %A Curien, Nicolas %A Kozma, Gady %A Sidoravicius, Vladas %A Tournier, Laurent %T Uniqueness of the infinite noodle %J Annales de l’Institut Henri Poincaré D %D 2019 %P 221-238 %V 6 %N 2 %U http://www.numdam.org/articles/10.4171/aihpd/70/ %R 10.4171/aihpd/70 %G en %F AIHPD_2019__6_2_221_0
Curien, Nicolas; Kozma, Gady; Sidoravicius, Vladas; Tournier, Laurent. Uniqueness of the infinite noodle. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 221-238. doi : 10.4171/aihpd/70. http://www.numdam.org/articles/10.4171/aihpd/70/
Cité par Sources :