Uniqueness of the infinite noodle
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 221-238.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Consider the graph obtained by superposition of an independent pair of uniform infinite non-crossing perfect matchings of the set of integers. We prove that this graph contains at most one infinite path. Several motivations are discussed.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/70
Classification : 60-XX, 05-XX
Mots-clés : Infinite cluster, random matching
@article{AIHPD_2019__6_2_221_0,
     author = {Curien, Nicolas and Kozma, Gady and Sidoravicius, Vladas and Tournier, Laurent},
     title = {Uniqueness of the infinite noodle},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {221--238},
     volume = {6},
     number = {2},
     year = {2019},
     doi = {10.4171/aihpd/70},
     mrnumber = {3950654},
     zbl = {1478.60256},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/70/}
}
TY  - JOUR
AU  - Curien, Nicolas
AU  - Kozma, Gady
AU  - Sidoravicius, Vladas
AU  - Tournier, Laurent
TI  - Uniqueness of the infinite noodle
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2019
SP  - 221
EP  - 238
VL  - 6
IS  - 2
UR  - http://www.numdam.org/articles/10.4171/aihpd/70/
DO  - 10.4171/aihpd/70
LA  - en
ID  - AIHPD_2019__6_2_221_0
ER  - 
%0 Journal Article
%A Curien, Nicolas
%A Kozma, Gady
%A Sidoravicius, Vladas
%A Tournier, Laurent
%T Uniqueness of the infinite noodle
%J Annales de l’Institut Henri Poincaré D
%D 2019
%P 221-238
%V 6
%N 2
%U http://www.numdam.org/articles/10.4171/aihpd/70/
%R 10.4171/aihpd/70
%G en
%F AIHPD_2019__6_2_221_0
Curien, Nicolas; Kozma, Gady; Sidoravicius, Vladas; Tournier, Laurent. Uniqueness of the infinite noodle. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 221-238. doi : 10.4171/aihpd/70. http://www.numdam.org/articles/10.4171/aihpd/70/

Cité par Sources :