The bundle Laplacian on discrete tori
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 1, pp. 97-121.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
We prove an asymptotic formula for the determinant of the bundle Laplacian on discrete -dimensional tori as the number of vertices tends to infinity. This determinant has a combinatorial interpretation in terms of cycle-rooted spanning forests. We also establish a relation (in the limit) between the spectral zeta function of a line bundle over a discrete torus, the spectral zeta function of the infinite graph and the Epstein–Hurwitz zeta function. The latter can be viewed as the spectral zeta function of the twisted continuous torus which is the limit of the sequence of discrete tori.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/66
Publié le :
DOI : 10.4171/aihpd/66
Classification :
05-XX, 11-XX, 35-XX, 58-XX
Mots-clés : Bundle Laplacian, heat kernel, cycle-rooted spanning forest, spectral zeta function, Kronecker limit formula
Mots-clés : Bundle Laplacian, heat kernel, cycle-rooted spanning forest, spectral zeta function, Kronecker limit formula
@article{AIHPD_2019__6_1_97_0, author = {Friedli, Fabien}, title = {The bundle {Laplacian} on discrete tori}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {97--121}, volume = {6}, number = {1}, year = {2019}, doi = {10.4171/aihpd/66}, mrnumber = {3911691}, zbl = {1407.05147}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/66/} }
Friedli, Fabien. The bundle Laplacian on discrete tori. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 1, pp. 97-121. doi : 10.4171/aihpd/66. http://www.numdam.org/articles/10.4171/aihpd/66/
Cité par Sources :