On a causal quantum stochastic double product integral related to Lévy area
Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 4, pp. 467-512.

We study the family of causal double product integrals

a < x < y < b 1 + i λ 2 ( d P x d Q y - d Q x d P y ) + i μ 2 ( d P x d P y + d Q x d Q y ) ,

where P and Q are the mutually noncommuting momentum and position Brownian motions of quantum stochastic calculus. The evaluation is motivated heuristically by approximating the continuous double product by a discrete product in which infinitesimals are replaced by finite increments. The latter is in turn approximated by the second quantisation of a discrete double product of rotation-like operators in different planes due to a result in [15]. The main problem solved in this paper is the explicit evaluation of the continuum limit W of the latter, and showing that W is a unitary operator. The kernel of W-I is written in terms of Bessel functions, and the evaluation is achieved by working on a lattice path model and enumerating linear extensions of related partial orderings, where the enumeration turns out to be heavily related to Dyck paths and generalisations of Catalan numbers.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/60
Classification : 81-XX, 05-XX, 06-XX
Mots-clés : causal double product, Lévy's stochastic area, position and momentum Brownian motions, linear extensions, Catalan numbers, Dyck paths
@article{AIHPD_2018__5_4_467_0,
     author = {Hudson, Robin L. and Pei, Yuchen},
     title = {On a causal quantum stochastic double product integral related to {L\'evy} area},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {467--512},
     volume = {5},
     number = {4},
     year = {2018},
     doi = {10.4171/aihpd/60},
     mrnumber = {3900289},
     zbl = {1418.81049},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/60/}
}
TY  - JOUR
AU  - Hudson, Robin L.
AU  - Pei, Yuchen
TI  - On a causal quantum stochastic double product integral related to Lévy area
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2018
SP  - 467
EP  - 512
VL  - 5
IS  - 4
UR  - http://www.numdam.org/articles/10.4171/aihpd/60/
DO  - 10.4171/aihpd/60
LA  - en
ID  - AIHPD_2018__5_4_467_0
ER  - 
%0 Journal Article
%A Hudson, Robin L.
%A Pei, Yuchen
%T On a causal quantum stochastic double product integral related to Lévy area
%J Annales de l’Institut Henri Poincaré D
%D 2018
%P 467-512
%V 5
%N 4
%U http://www.numdam.org/articles/10.4171/aihpd/60/
%R 10.4171/aihpd/60
%G en
%F AIHPD_2018__5_4_467_0
Hudson, Robin L.; Pei, Yuchen. On a causal quantum stochastic double product integral related to Lévy area. Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 4, pp. 467-512. doi : 10.4171/aihpd/60. http://www.numdam.org/articles/10.4171/aihpd/60/

Cité par Sources :