Three equivalent methods allow to compute the antipode of the Hopf algebras of Feynman diagrams in perturbative quantum �field theory (QFT): the Dyson–Salam formula, the Bogoliubov formula, and the Zimmermann forest formula. Whereas the �first two hold generally for arbitrary connected graded Hopf algebras, the third one requires extra structure properties of the underlying Hopf algebra but has the nice property to reduce drastically the number of terms in the expression of the antipode (it is optimal in that sense).
The present article is concerned with the forest formula: we show that it generalizes to arbitrary right-handed polynomial Hopf algebras. These Hopf algebras are dual to the enveloping algebras of preLie algebras – a structure common to many combinatorial Hopf algebras which is carried in particular by the Hopf algebras of Feynman diagrams.
Publié le :
DOI : 10.4171/aihpd/49
Mots-clés : Forest formula, Zimmermann forest formula, preLie algebra, enveloping algebra, Hopf algebra, right-sided bialgebra
@article{AIHPD_2018__5_1_103_0, author = {Menous, Fr\'ed\'eric and Patras, Fr\'ed\'eric}, title = {Right-handed {Hopf} algebras and the {preLie} forest formula}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {103--125}, volume = {5}, number = {1}, year = {2018}, doi = {10.4171/aihpd/49}, mrnumber = {3760884}, zbl = {1441.16038}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/49/} }
TY - JOUR AU - Menous, Frédéric AU - Patras, Frédéric TI - Right-handed Hopf algebras and the preLie forest formula JO - Annales de l’Institut Henri Poincaré D PY - 2018 SP - 103 EP - 125 VL - 5 IS - 1 UR - http://www.numdam.org/articles/10.4171/aihpd/49/ DO - 10.4171/aihpd/49 LA - en ID - AIHPD_2018__5_1_103_0 ER -
Menous, Frédéric; Patras, Frédéric. Right-handed Hopf algebras and the preLie forest formula. Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 1, pp. 103-125. doi : 10.4171/aihpd/49. http://www.numdam.org/articles/10.4171/aihpd/49/
Cité par Sources :