�The combinatorial Bosonisation identities of [5] show that the square of 2d-Ising order and disorder correlations are equal to ± the ratio of bipartite dimer partition functions. In this self-contained paper, we give an alternative proof of these identities using the approach of [2]. Our proof is more direct and allows to see the e�ect of order and disorder on XOR-Ising polygon con�gurations.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/26
Publié le :
DOI : 10.4171/aihpd/26
Classification :
82-XX
Mots-clés : Bipartite dimer model, two-dimensional Ising model, correlation functions, XOR-Ising model
Mots-clés : Bipartite dimer model, two-dimensional Ising model, correlation functions, XOR-Ising model
@article{AIHPD_2016__3_2_121_0, author = {de Tili\`ere, B\'eatrice}, title = {Bipartite dimer representation of squares of {2d-Ising} correlations}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {121--138}, volume = {3}, number = {2}, year = {2016}, doi = {10.4171/aihpd/26}, mrnumber = {3506074}, zbl = {1348.82028}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/26/} }
TY - JOUR AU - de Tilière, Béatrice TI - Bipartite dimer representation of squares of 2d-Ising correlations JO - Annales de l’Institut Henri Poincaré D PY - 2016 SP - 121 EP - 138 VL - 3 IS - 2 UR - http://www.numdam.org/articles/10.4171/aihpd/26/ DO - 10.4171/aihpd/26 LA - en ID - AIHPD_2016__3_2_121_0 ER -
de Tilière, Béatrice. Bipartite dimer representation of squares of 2d-Ising correlations. Annales de l’Institut Henri Poincaré D, Tome 3 (2016) no. 2, pp. 121-138. doi : 10.4171/aihpd/26. http://www.numdam.org/articles/10.4171/aihpd/26/
Cité par Sources :