Further investigations into the graph theory of -periods and the invariant
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 3, pp. 473-524.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
A Feynman period is a particular residue of a scalar Feynman integral which is both physically and number theoretically interesting. Two ways in which the graph theory of the underlying Feynman graph can illuminate the Feynman period are via graph operations which are period invariant and other graph quantities which predict aspects of the Feynman period, one notable example is known as the invariant. We give results and computations in both these directions, proving a new period identity and computing its consequences up to loops in -theory, proving a invariant identity, and giving the results of a computational investigation of invariants at loops.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/123
Publié le :
DOI : 10.4171/aihpd/123
Classification :
81-XX, 05-XX
Mots-clés : Feynman integrals, Feynman diagrams, Feynman periods, scalar field theory, $c_2$ invariant, graph identities
Mots-clés : Feynman integrals, Feynman diagrams, Feynman periods, scalar field theory, $c_2$ invariant, graph identities
@article{AIHPD_2022__9_3_473_0, author = {Hu, Simone and Schnetz, Oliver and Shaw, Jim and Yeats, Karen}, title = {Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {473--524}, volume = {9}, number = {3}, year = {2022}, doi = {10.4171/aihpd/123}, mrnumber = {4525139}, zbl = {1520.81075}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/123/} }
TY - JOUR AU - Hu, Simone AU - Schnetz, Oliver AU - Shaw, Jim AU - Yeats, Karen TI - Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 473 EP - 524 VL - 9 IS - 3 UR - http://www.numdam.org/articles/10.4171/aihpd/123/ DO - 10.4171/aihpd/123 LA - en ID - AIHPD_2022__9_3_473_0 ER -
%0 Journal Article %A Hu, Simone %A Schnetz, Oliver %A Shaw, Jim %A Yeats, Karen %T Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant %J Annales de l’Institut Henri Poincaré D %D 2022 %P 473-524 %V 9 %N 3 %U http://www.numdam.org/articles/10.4171/aihpd/123/ %R 10.4171/aihpd/123 %G en %F AIHPD_2022__9_3_473_0
Hu, Simone; Schnetz, Oliver; Shaw, Jim; Yeats, Karen. Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 3, pp. 473-524. doi : 10.4171/aihpd/123. http://www.numdam.org/articles/10.4171/aihpd/123/
Cité par Sources :