On the minor problem and branching coefficients
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 2, pp. 349-366.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The minor problem, namely the study of the spectrum of a principal submatrix of a Hermitian matrix taken at random on its orbit under conjugation, is revisited, with emphasis on the use of orbital integrals and on the connection with branching coefficients in the decomposition of an irreducible representation of U(n), resp. SU(n), into irreps of U(n-1), resp. SU(n-1). As is well known, the branching coefficients are trivial (equal to 0 or 1) for the branchings of U(n)U(n-1), while they are not for SU(n)SU(n-1), where multiplicities may appear. In the latter case, the problem is shown to be related to the distribution of spacings in the minor problem. An explicit expression is obtained for the multiplicities, in terms of an integral stemming from the minor problem, and an Ansatz is given for a closed form expression for arbitrary n.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/120
Classification : 17-XX, 22-XX, 43-XX
Mots-clés : minor problem, Cauchy–Rayleigh interlacing theorem, SU(n) branching coefficients
@article{AIHPD_2022__9_2_349_0,
     author = {Zuber, Jean-Bernard},
     title = {On the minor problem and branching coefficients},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {349--366},
     volume = {9},
     number = {2},
     year = {2022},
     doi = {10.4171/aihpd/120},
     mrnumber = {4450017},
     zbl = {1498.17021},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/120/}
}
TY  - JOUR
AU  - Zuber, Jean-Bernard
TI  - On the minor problem and branching coefficients
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 349
EP  - 366
VL  - 9
IS  - 2
UR  - http://www.numdam.org/articles/10.4171/aihpd/120/
DO  - 10.4171/aihpd/120
LA  - en
ID  - AIHPD_2022__9_2_349_0
ER  - 
%0 Journal Article
%A Zuber, Jean-Bernard
%T On the minor problem and branching coefficients
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 349-366
%V 9
%N 2
%U http://www.numdam.org/articles/10.4171/aihpd/120/
%R 10.4171/aihpd/120
%G en
%F AIHPD_2022__9_2_349_0
Zuber, Jean-Bernard. On the minor problem and branching coefficients. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 2, pp. 349-366. doi : 10.4171/aihpd/120. http://www.numdam.org/articles/10.4171/aihpd/120/

Cité par Sources :