We study generating series of Gromov–Witten invariants of and their tropical counterparts. Using tropical degeneration and floor diagram techniques, we can express the generating series as sums of Feynman integrals, where each summand corresponds to a certain type of graph which we call a . The individual summands are – just as in the case of mirror symmetry of elliptic curves, where the generating series of Hurwitz numbers equals a sum of Feynman integrals – complex analytic path integrals involving a product of propagators (equal to the Weierstrass--function plus an Eisenstein series). We also use pearl chains to study generating functions of counts of tropical curves in of so-called \textit{leaky degree}.
Publié le :
DOI : 10.4171/aihpd/115
Mots-clés : Elliptic fibrations, Feynman integral, tropical geometry, Gromov–Witten invariants, quasimodular forms
@article{AIHPD_2022__9_1_121_0, author = {B\"ohm, Janko and Goldner, Christoph and Markwig, Hannah}, title = {Counts of (tropical) curves in $E \times \mathbb{P}^1$ and {Feynman} integrals}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {121--158}, volume = {9}, number = {1}, year = {2022}, doi = {10.4171/aihpd/115}, zbl = {1492.14100}, mrnumber = {4408000}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/115/} }
TY - JOUR AU - Böhm, Janko AU - Goldner, Christoph AU - Markwig, Hannah TI - Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 121 EP - 158 VL - 9 IS - 1 UR - http://www.numdam.org/articles/10.4171/aihpd/115/ DO - 10.4171/aihpd/115 LA - en ID - AIHPD_2022__9_1_121_0 ER -
%0 Journal Article %A Böhm, Janko %A Goldner, Christoph %A Markwig, Hannah %T Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals %J Annales de l’Institut Henri Poincaré D %D 2022 %P 121-158 %V 9 %N 1 %U http://www.numdam.org/articles/10.4171/aihpd/115/ %R 10.4171/aihpd/115 %G en %F AIHPD_2022__9_1_121_0
Böhm, Janko; Goldner, Christoph; Markwig, Hannah. Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 1, pp. 121-158. doi : 10.4171/aihpd/115. http://www.numdam.org/articles/10.4171/aihpd/115/
Cité par Sources :