Counts of (tropical) curves in E× 1 and Feynman integrals
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 1, pp. 121-158.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study generating series of Gromov–Witten invariants of E× 1 and their tropical counterparts. Using tropical degeneration and floor diagram techniques, we can express the generating series as sums of Feynman integrals, where each summand corresponds to a certain type of graph which we call a 𝑝𝑒𝑎𝑟𝑙𝑐ℎ𝑎𝑖𝑛. The individual summands are – just as in the case of mirror symmetry of elliptic curves, where the generating series of Hurwitz numbers equals a sum of Feynman integrals – complex analytic path integrals involving a product of propagators (equal to the Weierstrass--function plus an Eisenstein series). We also use pearl chains to study generating functions of counts of tropical curves in E 𝕋 × 𝕋 1 of so-called \textit{leaky degree}.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/115
Classification : 14-XX, 11-XX, 81-XX
Mots-clés : Elliptic fibrations, Feynman integral, tropical geometry, Gromov–Witten invariants, quasimodular forms
@article{AIHPD_2022__9_1_121_0,
     author = {B\"ohm, Janko and Goldner, Christoph and Markwig, Hannah},
     title = {Counts of (tropical) curves in $E \times \mathbb{P}^1$ and {Feynman} integrals},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {121--158},
     volume = {9},
     number = {1},
     year = {2022},
     doi = {10.4171/aihpd/115},
     zbl = {1492.14100},
     mrnumber = {4408000},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/115/}
}
TY  - JOUR
AU  - Böhm, Janko
AU  - Goldner, Christoph
AU  - Markwig, Hannah
TI  - Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 121
EP  - 158
VL  - 9
IS  - 1
UR  - http://www.numdam.org/articles/10.4171/aihpd/115/
DO  - 10.4171/aihpd/115
LA  - en
ID  - AIHPD_2022__9_1_121_0
ER  - 
%0 Journal Article
%A Böhm, Janko
%A Goldner, Christoph
%A Markwig, Hannah
%T Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 121-158
%V 9
%N 1
%U http://www.numdam.org/articles/10.4171/aihpd/115/
%R 10.4171/aihpd/115
%G en
%F AIHPD_2022__9_1_121_0
Böhm, Janko; Goldner, Christoph; Markwig, Hannah. Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 1, pp. 121-158. doi : 10.4171/aihpd/115. http://www.numdam.org/articles/10.4171/aihpd/115/

Cité par Sources :