We explore the geometric space parametrized by (tree level) Wilson loops in SYM . We show that this space can be seen as a vector bundle over a totally non-negative subspace of the Grassmannian, . Furthermore, we explicitly show that this bundle is non-orientable in the majority of the cases, and conjecture that it is non-orientable in the remaining situation. Using the combinatorics of the Deodhar decomposition of the Grassmannian, we identify subspaces for which the restricted bundle lies outside the positive Grassmannian. Finally, while probing the combinatorics of the Deodhar decomposition, we give a diagrammatic algorithm for reading equations determining each Deodhar component as a semialgebraic set.
Publié le :
DOI : 10.4171/aihpd/111
Mots-clés : SYM $\mathcal{N}=4$, positive Grassmannians, Deodhar decomposition
@article{AIHPD_2021__8_4_583_0, author = {Agarwala, Susama and Marcott, Cameron}, title = {Wilson loops in {SYM} $\mathcal{N}=4$ do not parametrize an orientable space}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {583--622}, volume = {8}, number = {4}, year = {2021}, doi = {10.4171/aihpd/111}, mrnumber = {4337449}, zbl = {1483.81130}, language = {en}, url = {http://www.numdam.org/articles/10.4171/aihpd/111/} }
TY - JOUR AU - Agarwala, Susama AU - Marcott, Cameron TI - Wilson loops in SYM $\mathcal{N}=4$ do not parametrize an orientable space JO - Annales de l’Institut Henri Poincaré D PY - 2021 SP - 583 EP - 622 VL - 8 IS - 4 UR - http://www.numdam.org/articles/10.4171/aihpd/111/ DO - 10.4171/aihpd/111 LA - en ID - AIHPD_2021__8_4_583_0 ER -
%0 Journal Article %A Agarwala, Susama %A Marcott, Cameron %T Wilson loops in SYM $\mathcal{N}=4$ do not parametrize an orientable space %J Annales de l’Institut Henri Poincaré D %D 2021 %P 583-622 %V 8 %N 4 %U http://www.numdam.org/articles/10.4171/aihpd/111/ %R 10.4171/aihpd/111 %G en %F AIHPD_2021__8_4_583_0
Agarwala, Susama; Marcott, Cameron. Wilson loops in SYM $\mathcal{N}=4$ do not parametrize an orientable space. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 4, pp. 583-622. doi : 10.4171/aihpd/111. http://www.numdam.org/articles/10.4171/aihpd/111/
Cité par Sources :