Constrained percolation in two dimensions
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 3, pp. 323-375.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove absence of infinite clusters and contours in a class of critical constrained percolation models on the square lattice. The percolation configuration is assumed to satisfy certain hard local constraints, but only weak symmetry and ergodicity conditions are imposed on its law. The proofs use new combinatorial techniques exploiting planar duality.

Applications include absence of infinite clusters of diagonal edges for critical dimer models on the square-octagon lattice, as well as absence of infinite contours and infinite clusters for critical XOR Ising models on the square grid. We also prove that there exists at most one infinite contour for high-temperature XOR Ising models, and no infinite contour for low-temperature XOR Ising model.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/106
Classification : 82-XX
Mots-clés : Percolation, infinite cluster, dimer, square-hexagon lattice
@article{AIHPD_2021__8_3_323_0,
     author = {Holroyd, Alexander E. and Li, Zhongyang},
     title = {Constrained percolation in two dimensions},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {323--375},
     volume = {8},
     number = {3},
     year = {2021},
     doi = {10.4171/aihpd/106},
     mrnumber = {4321220},
     zbl = {1482.82035},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/106/}
}
TY  - JOUR
AU  - Holroyd, Alexander E.
AU  - Li, Zhongyang
TI  - Constrained percolation in two dimensions
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2021
SP  - 323
EP  - 375
VL  - 8
IS  - 3
UR  - http://www.numdam.org/articles/10.4171/aihpd/106/
DO  - 10.4171/aihpd/106
LA  - en
ID  - AIHPD_2021__8_3_323_0
ER  - 
%0 Journal Article
%A Holroyd, Alexander E.
%A Li, Zhongyang
%T Constrained percolation in two dimensions
%J Annales de l’Institut Henri Poincaré D
%D 2021
%P 323-375
%V 8
%N 3
%U http://www.numdam.org/articles/10.4171/aihpd/106/
%R 10.4171/aihpd/106
%G en
%F AIHPD_2021__8_3_323_0
Holroyd, Alexander E.; Li, Zhongyang. Constrained percolation in two dimensions. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 3, pp. 323-375. doi : 10.4171/aihpd/106. http://www.numdam.org/articles/10.4171/aihpd/106/

Cité par Sources :