Integer moments of complex Wishart matrices and Hurwitz numbers
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 243-268.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We give formulae for the cumulants of complex Wishart (LUE) and inverse Wishart matrices (inverse LUE). Their large-N expansions are generating functions of double (strictly and weakly) monotone Hurwitz numbers which count constrained factorisations in the symmetric group. The two expansions can be compared and combined with a duality relation proved in [F. D. Cunden, F. Mezzadri, N. O’Connell, and N. J. Simm, Moments of random matrices and hypergeometric orthogonal polynomials, Comm. Math. Phys. 369 (2019), no. 3, 1091–1145] to obtain: i) a combinatorial proof of the reflection formula between moments of LUE and inverse LUE at genus zero and, ii) a new functional relation between the generating functions of monotone and strictly monotone Hurwitz numbers. The main result resolves the integrality conjecture formulated in [F. D. Cunden, F. Mezzadri, N. J. Simm, and P. Vivo, Correlators for the Wigner–Smith time-delay matrix of chaotic cavities, J. Phys. A 49 (2016), no. 18, 18LT01, 20 pp] on the time-delay cumulants in quantum chaotic transport. The precise combinatorial description of the cumulants given here may cast new light on the concordance between random matrix and semiclassical theories.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/103
Classification : 05-XX, 15-XX, 60-XX, 81-XX
Mots-clés : Moments of random matrices, genus expansion,Wishart distribution, Hurwitz numbers, Weingarten calculus, quantum chaotic transport
@article{AIHPD_2021__8_2_243_0,
     author = {Cunden, Fabio Deelan and Dahlqvist, Antoine and O'Connell, Neil},
     title = {Integer moments of complex {Wishart} matrices and {Hurwitz} numbers},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {243--268},
     volume = {8},
     number = {2},
     year = {2021},
     doi = {10.4171/aihpd/103},
     mrnumber = {4261672},
     zbl = {1466.60009},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/103/}
}
TY  - JOUR
AU  - Cunden, Fabio Deelan
AU  - Dahlqvist, Antoine
AU  - O'Connell, Neil
TI  - Integer moments of complex Wishart matrices and Hurwitz numbers
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2021
SP  - 243
EP  - 268
VL  - 8
IS  - 2
UR  - http://www.numdam.org/articles/10.4171/aihpd/103/
DO  - 10.4171/aihpd/103
LA  - en
ID  - AIHPD_2021__8_2_243_0
ER  - 
%0 Journal Article
%A Cunden, Fabio Deelan
%A Dahlqvist, Antoine
%A O'Connell, Neil
%T Integer moments of complex Wishart matrices and Hurwitz numbers
%J Annales de l’Institut Henri Poincaré D
%D 2021
%P 243-268
%V 8
%N 2
%U http://www.numdam.org/articles/10.4171/aihpd/103/
%R 10.4171/aihpd/103
%G en
%F AIHPD_2021__8_2_243_0
Cunden, Fabio Deelan; Dahlqvist, Antoine; O'Connell, Neil. Integer moments of complex Wishart matrices and Hurwitz numbers. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 243-268. doi : 10.4171/aihpd/103. http://www.numdam.org/articles/10.4171/aihpd/103/

Cité par Sources :