Mixed partition functions and exponentially bounded edge-connection rank
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 179-200.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study graph parameters whose associated edge-connection matrices have exponentially bounded rank growth. Our main result is an explicit construction of a large class of graph parameters with this property that we call mixed partition functions. Mixed partition functions can be seen as a generalization of partition functions of vertex models, as introduced by de la Harpe and Jones, [P. de la Harpe and V. F. R. Jones, Graph invariants related to statistical mechanical models: examples and problems, J. Combin. Theory Ser. B 57 (1993), no. 2, 207–227.] and they are related to invariant theory of orthosymplectic supergroup. We moreover show that evaluations of the characteristic polynomial of a simple graph are examples of mixed partition functions, answering a question of de la Harpe and Jones. (NOTE. Some of the results of this paper were announced in an extended abstract: G. Regts and B. Sevenster, Partition functions from orthogonal and symplectic group invariants, Electron. Notes Discrete Math. 61 (2017), 1011–1017. Unfortunately that reference contains a mistake; we will comment on that below).

Accepté le :
Publié le :
DOI : 10.4171/aihpd/100
Classification : 05-XX, 15-XX
Mots-clés : Partition function, graph parameter, orthogonal group, symplectic group, orthosymplectic Lie super algebra, circuit partition polynomial, connection matrix
@article{AIHPD_2021__8_2_179_0,
     author = {Regts, Guus and Sevenster, Bart},
     title = {Mixed partition functions and exponentially bounded edge-connection rank},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {179--200},
     volume = {8},
     number = {2},
     year = {2021},
     doi = {10.4171/aihpd/100},
     mrnumber = {4261669},
     zbl = {1465.05068},
     language = {en},
     url = {http://www.numdam.org/articles/10.4171/aihpd/100/}
}
TY  - JOUR
AU  - Regts, Guus
AU  - Sevenster, Bart
TI  - Mixed partition functions and exponentially bounded edge-connection rank
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2021
SP  - 179
EP  - 200
VL  - 8
IS  - 2
UR  - http://www.numdam.org/articles/10.4171/aihpd/100/
DO  - 10.4171/aihpd/100
LA  - en
ID  - AIHPD_2021__8_2_179_0
ER  - 
%0 Journal Article
%A Regts, Guus
%A Sevenster, Bart
%T Mixed partition functions and exponentially bounded edge-connection rank
%J Annales de l’Institut Henri Poincaré D
%D 2021
%P 179-200
%V 8
%N 2
%U http://www.numdam.org/articles/10.4171/aihpd/100/
%R 10.4171/aihpd/100
%G en
%F AIHPD_2021__8_2_179_0
Regts, Guus; Sevenster, Bart. Mixed partition functions and exponentially bounded edge-connection rank. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 179-200. doi : 10.4171/aihpd/100. http://www.numdam.org/articles/10.4171/aihpd/100/

Cité par Sources :