We introduce a general formalism with minimal requirements under which we are able to prove the pro-modular Fontaine–Mazur conjecture. We verify it in the ordinary case using the recent construction of Breuil and Herzig.
Publié le :
DOI : 10.4171/RSMUP/139-5
DOI : 10.4171/RSMUP/139-5
Classification :
11, 00
Mots clés : Galois representations, Shimura varieties, Langlands program
Mots clés : Galois representations, Shimura varieties, Langlands program
Affiliations des auteurs :
Chojecki, Przemyslaw 1
@article{RSMUP_2018__139__159_0, author = {Chojecki, Przemyslaw}, title = {Weak local-global compatibility and ordinary representations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {159--183}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {139}, year = {2018}, doi = {10.4171/RSMUP/139-5}, mrnumber = {3825184}, zbl = {1468.11140}, url = {http://www.numdam.org/articles/10.4171/RSMUP/139-5/} }
TY - JOUR AU - Chojecki, Przemyslaw TI - Weak local-global compatibility and ordinary representations JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2018 SP - 159 EP - 183 VL - 139 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/139-5/ DO - 10.4171/RSMUP/139-5 ID - RSMUP_2018__139__159_0 ER -
%0 Journal Article %A Chojecki, Przemyslaw %T Weak local-global compatibility and ordinary representations %J Rendiconti del Seminario Matematico della Università di Padova %D 2018 %P 159-183 %V 139 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/139-5/ %R 10.4171/RSMUP/139-5 %F RSMUP_2018__139__159_0
Chojecki, Przemyslaw. Weak local-global compatibility and ordinary representations. Rendiconti del Seminario Matematico della Università di Padova, Tome 139 (2018), pp. 159-183. doi : 10.4171/RSMUP/139-5. http://www.numdam.org/articles/10.4171/RSMUP/139-5/
Cité par Sources :