Let be a finite group. Let be a partition of the set of all primes and an integer. We write , . A set of subgroups of is said to be a complete Hall -set of if every member of is a Hall -subgroup of for some and contains exact one Hall -subgroup of for every . A subgroup of is called (i) a -Hall subgroup of if ; (ii) -permutable in if possesses a complete Hall -set such that for all and all . We say that a subgroup of is -permutably embedded in if is a -Hall subgroup of some -permutable subgroup of . We study finite groups having an -permutably embedded subgroup of order for each subgroup of . Some known results are generalized.
Publié le :
DOI : 10.4171/RSMUP/139-4
DOI : 10.4171/RSMUP/139-4
Classification :
20, 00
Mots clés : Finite group, $\sigma$-Hall subgroup, $\sigma$-subnormal subgroup, $\sigma$-nilpotent group, $H_{\sigma}$-permutably embedded subgroup
Mots clés : Finite group, $\sigma$-Hall subgroup, $\sigma$-subnormal subgroup, $\sigma$-nilpotent group, $H_{\sigma}$-permutably embedded subgroup
Affiliations des auteurs :
Guo, Wenbin 1 ;
Zhang, Chi 1 ;
Skiba, Alexander 2 ;
Sinitsa, D. 2
@article{RSMUP_2018__139__143_0, author = {Guo, Wenbin and Zhang, Chi and Skiba, Alexander and Sinitsa, D.}, title = {On $H_{\sigma}$-permutably embedded subgroups of finite groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {143--158}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {139}, year = {2018}, doi = {10.4171/RSMUP/139-4}, mrnumber = {3825183}, zbl = {1483.20031}, url = {http://www.numdam.org/articles/10.4171/RSMUP/139-4/} }
TY - JOUR AU - Guo, Wenbin AU - Zhang, Chi AU - Skiba, Alexander AU - Sinitsa, D. TI - On $H_{\sigma}$-permutably embedded subgroups of finite groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2018 SP - 143 EP - 158 VL - 139 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/139-4/ DO - 10.4171/RSMUP/139-4 ID - RSMUP_2018__139__143_0 ER -
%0 Journal Article %A Guo, Wenbin %A Zhang, Chi %A Skiba, Alexander %A Sinitsa, D. %T On $H_{\sigma}$-permutably embedded subgroups of finite groups %J Rendiconti del Seminario Matematico della Università di Padova %D 2018 %P 143-158 %V 139 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/139-4/ %R 10.4171/RSMUP/139-4 %F RSMUP_2018__139__143_0
Guo, Wenbin; Zhang, Chi; Skiba, Alexander; Sinitsa, D. On $H_{\sigma}$-permutably embedded subgroups of finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 139 (2018), pp. 143-158. doi : 10.4171/RSMUP/139-4. http://www.numdam.org/articles/10.4171/RSMUP/139-4/
Cité par Sources :