Nunke's problem asks when the torsion product of two abelian -groups is a direct sum of countable reduced groups. In previous work the author gave a complete answer to this question when the groups involved have countable length. In this paper a complete answer is given in the case of groups of uncountable length, at least in any set-theoretic universe in which .
Publié le :
DOI : 10.4171/RSMUP/139-11
DOI : 10.4171/RSMUP/139-11
Classification :
20
Mots clés : Nunke’s problem, abelian $p$-groups, dsc groups
Mots clés : Nunke’s problem, abelian $p$-groups, dsc groups
Affiliations des auteurs :
Keef, Patrick 1
@article{RSMUP_2018__139__261_0, author = {Keef, Patrick}, title = {Nunke{\textquoteright}s problem for abelian $p$-groups of uncountable length}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {261--281}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {139}, year = {2018}, doi = {10.4171/RSMUP/139-11}, mrnumber = {3825190}, zbl = {1429.20036}, url = {http://www.numdam.org/articles/10.4171/RSMUP/139-11/} }
TY - JOUR AU - Keef, Patrick TI - Nunke’s problem for abelian $p$-groups of uncountable length JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2018 SP - 261 EP - 281 VL - 139 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/139-11/ DO - 10.4171/RSMUP/139-11 ID - RSMUP_2018__139__261_0 ER -
%0 Journal Article %A Keef, Patrick %T Nunke’s problem for abelian $p$-groups of uncountable length %J Rendiconti del Seminario Matematico della Università di Padova %D 2018 %P 261-281 %V 139 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/139-11/ %R 10.4171/RSMUP/139-11 %F RSMUP_2018__139__261_0
Keef, Patrick. Nunke’s problem for abelian $p$-groups of uncountable length. Rendiconti del Seminario Matematico della Università di Padova, Tome 139 (2018), pp. 261-281. doi : 10.4171/RSMUP/139-11. http://www.numdam.org/articles/10.4171/RSMUP/139-11/
Cité par Sources :