Mixing in a natural way the notions of fully inert (see [6]) and strongly invariant (see [4]) subgroups of abelian groups, we introduce the strongly inert subgroups which we determine for several classes of abelian groups.
Publié le :
DOI : 10.4171/RSMUP/138-5
DOI : 10.4171/RSMUP/138-5
Classification :
20
Mots clés : Strongly invariant, strongly inert, fully inert, commensurable subgroups
Mots clés : Strongly invariant, strongly inert, fully inert, commensurable subgroups
Affiliations des auteurs :
Breaz, Simon 1 ;
Călugăreanu, Grigore 1
@article{RSMUP_2017__138__101_0, author = {Breaz, Simon and C\u{a}lug\u{a}reanu, Grigore}, title = {Strongly inert subgroups of abelian groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {101--114}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {138}, year = {2017}, doi = {10.4171/RSMUP/138-5}, mrnumber = {3743247}, zbl = {1429.20037}, url = {http://www.numdam.org/articles/10.4171/RSMUP/138-5/} }
TY - JOUR AU - Breaz, Simon AU - Călugăreanu, Grigore TI - Strongly inert subgroups of abelian groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2017 SP - 101 EP - 114 VL - 138 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/138-5/ DO - 10.4171/RSMUP/138-5 ID - RSMUP_2017__138__101_0 ER -
%0 Journal Article %A Breaz, Simon %A Călugăreanu, Grigore %T Strongly inert subgroups of abelian groups %J Rendiconti del Seminario Matematico della Università di Padova %D 2017 %P 101-114 %V 138 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/138-5/ %R 10.4171/RSMUP/138-5 %F RSMUP_2017__138__101_0
Breaz, Simon; Călugăreanu, Grigore. Strongly inert subgroups of abelian groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 138 (2017), pp. 101-114. doi : 10.4171/RSMUP/138-5. http://www.numdam.org/articles/10.4171/RSMUP/138-5/
Cité par Sources :