Let be an associative ring with identity and let denote the Jacobson radical of . We say that is primary if is simple Artinian and is nilpotent. In this paper we obtain necessary and sufficient conditions for the group ring , where is a nontrivial abelian group, to be primary.
DOI :
10.4171/RSMUP/137-12
Classification :
16S34, 16U99
Mots-clés : Primary, group ring
Mots-clés : Primary, group ring
Affiliations des auteurs :
Chin, Angelina 1 ;
Qua, Kiat Tat 2
@article{RSMUP_2017__137__223_0, author = {Chin, Angelina and Qua, Kiat Tat}, title = {Primary group rings}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {223--228}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {137}, year = {2017}, doi = {10.4171/RSMUP/137-12}, mrnumber = {3652877}, zbl = {1382.16017}, url = {http://www.numdam.org/articles/10.4171/RSMUP/137-12/} }
TY - JOUR AU - Chin, Angelina AU - Qua, Kiat Tat TI - Primary group rings JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2017 SP - 223 EP - 228 VL - 137 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/137-12/ DO - 10.4171/RSMUP/137-12 ID - RSMUP_2017__137__223_0 ER -
%0 Journal Article %A Chin, Angelina %A Qua, Kiat Tat %T Primary group rings %J Rendiconti del Seminario Matematico della Università di Padova %D 2017 %P 223-228 %V 137 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/137-12/ %R 10.4171/RSMUP/137-12 %F RSMUP_2017__137__223_0
Chin, Angelina; Qua, Kiat Tat. Primary group rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 137 (2017), pp. 223-228. doi : 10.4171/RSMUP/137-12. http://www.numdam.org/articles/10.4171/RSMUP/137-12/
Cité par Sources :