The goal of this paper is to characterize the right non-singular rings for which every non-singular right -module contains a maximal -closed submodule. Several examples and related results are given.
Classification :
16
Mots clés : $\mathcal S$-closed submodule, primitive idempotents, reduced ring
Mots clés : $\mathcal S$-closed submodule, primitive idempotents, reduced ring
Affiliations des auteurs :
Albrecht, Ulrich 1
@article{RSMUP_2016__136__277_0, author = {Albrecht, Ulrich}, title = {On the existence of maximal $\mathcal S$-closed submodules}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {277--289}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {136}, year = {2016}, doi = {10.4171/RSMUP/136-18}, url = {http://www.numdam.org/articles/10.4171/RSMUP/136-18/} }
TY - JOUR AU - Albrecht, Ulrich TI - On the existence of maximal $\mathcal S$-closed submodules JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2016 SP - 277 EP - 289 VL - 136 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/136-18/ DO - 10.4171/RSMUP/136-18 ID - RSMUP_2016__136__277_0 ER -
%0 Journal Article %A Albrecht, Ulrich %T On the existence of maximal $\mathcal S$-closed submodules %J Rendiconti del Seminario Matematico della Università di Padova %D 2016 %P 277-289 %V 136 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/136-18/ %R 10.4171/RSMUP/136-18 %F RSMUP_2016__136__277_0
Albrecht, Ulrich. On the existence of maximal $\mathcal S$-closed submodules. Rendiconti del Seminario Matematico della Università di Padova, Tome 136 (2016), pp. 277-289. doi : 10.4171/RSMUP/136-18. http://www.numdam.org/articles/10.4171/RSMUP/136-18/
Cité par Sources :