On the existence of maximal 𝒮-closed submodules
Rendiconti del Seminario Matematico della Università di Padova, Tome 136 (2016), pp. 277-289.

The goal of this paper is to characterize the right non-singular rings R for which every non-singular right R-module contains a maximal 𝒮-closed submodule. Several examples and related results are given.

DOI : 10.4171/RSMUP/136-18
Classification : 16
Mots clés : $\mathcal S$-closed submodule, primitive idempotents, reduced ring
Albrecht, Ulrich 1

1 Auburn University, AUBURN, UNITED STATES
@article{RSMUP_2016__136__277_0,
     author = {Albrecht, Ulrich},
     title = {On the existence of maximal $\mathcal S$-closed submodules},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {277--289},
     publisher = {European Mathematical Society Publishing House},
     address = {Zuerich, Switzerland},
     volume = {136},
     year = {2016},
     doi = {10.4171/RSMUP/136-18},
     url = {http://www.numdam.org/articles/10.4171/RSMUP/136-18/}
}
TY  - JOUR
AU  - Albrecht, Ulrich
TI  - On the existence of maximal $\mathcal S$-closed submodules
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2016
SP  - 277
EP  - 289
VL  - 136
PB  - European Mathematical Society Publishing House
PP  - Zuerich, Switzerland
UR  - http://www.numdam.org/articles/10.4171/RSMUP/136-18/
DO  - 10.4171/RSMUP/136-18
ID  - RSMUP_2016__136__277_0
ER  - 
%0 Journal Article
%A Albrecht, Ulrich
%T On the existence of maximal $\mathcal S$-closed submodules
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2016
%P 277-289
%V 136
%I European Mathematical Society Publishing House
%C Zuerich, Switzerland
%U http://www.numdam.org/articles/10.4171/RSMUP/136-18/
%R 10.4171/RSMUP/136-18
%F RSMUP_2016__136__277_0
Albrecht, Ulrich. On the existence of maximal $\mathcal S$-closed submodules. Rendiconti del Seminario Matematico della Università di Padova, Tome 136 (2016), pp. 277-289. doi : 10.4171/RSMUP/136-18. http://www.numdam.org/articles/10.4171/RSMUP/136-18/

Cité par Sources :