Let be a real analytic manifold, a closed subanalytic subset of . We show that the Whitney–de Rham complex over is quasi-isomorphic to the constant sheaf .
Classification :
32
Mots-clés : Sub analytic sets, $\mathcal D$-modules
Mots-clés : Sub analytic sets, $\mathcal D$-modules
Affiliations des auteurs :
Chen, Hou-Yi 1
@article{RSMUP_2016__135__151_0, author = {Chen, Hou-Yi}, title = {A {Poincar\'e} lemma for {Whitney{\textendash}de} {Rham} complex}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {151--156}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {135}, year = {2016}, doi = {10.4171/RSMUP/135-8}, url = {http://www.numdam.org/articles/10.4171/RSMUP/135-8/} }
TY - JOUR AU - Chen, Hou-Yi TI - A Poincaré lemma for Whitney–de Rham complex JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2016 SP - 151 EP - 156 VL - 135 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/135-8/ DO - 10.4171/RSMUP/135-8 ID - RSMUP_2016__135__151_0 ER -
%0 Journal Article %A Chen, Hou-Yi %T A Poincaré lemma for Whitney–de Rham complex %J Rendiconti del Seminario Matematico della Università di Padova %D 2016 %P 151-156 %V 135 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/135-8/ %R 10.4171/RSMUP/135-8 %F RSMUP_2016__135__151_0
Chen, Hou-Yi. A Poincaré lemma for Whitney–de Rham complex. Rendiconti del Seminario Matematico della Università di Padova, Tome 135 (2016), pp. 151-156. doi : 10.4171/RSMUP/135-8. http://www.numdam.org/articles/10.4171/RSMUP/135-8/
Cité par Sources :