In [8] it was proved that any increasing functional of the fi rst eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of of unit measure. In this paper we show that every minimizer is uniformly bounded by a constant depending only on .
Classification :
49, 65
Mots clés : Shape optimization, Dirichlet Laplacian, eigenvalues, spectral problems
Mots clés : Shape optimization, Dirichlet Laplacian, eigenvalues, spectral problems
Affiliations des auteurs :
Mazzoleni, Dario 1
@article{RSMUP_2016__135__207_0, author = {Mazzoleni, Dario}, title = {Boundedness of minimizers for spectral problems in $\mathbb R^N$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {207--221}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {135}, year = {2016}, doi = {10.4171/RSMUP/135-12}, url = {http://www.numdam.org/articles/10.4171/RSMUP/135-12/} }
TY - JOUR AU - Mazzoleni, Dario TI - Boundedness of minimizers for spectral problems in $\mathbb R^N$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2016 SP - 207 EP - 221 VL - 135 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://www.numdam.org/articles/10.4171/RSMUP/135-12/ DO - 10.4171/RSMUP/135-12 ID - RSMUP_2016__135__207_0 ER -
%0 Journal Article %A Mazzoleni, Dario %T Boundedness of minimizers for spectral problems in $\mathbb R^N$ %J Rendiconti del Seminario Matematico della Università di Padova %D 2016 %P 207-221 %V 135 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://www.numdam.org/articles/10.4171/RSMUP/135-12/ %R 10.4171/RSMUP/135-12 %F RSMUP_2016__135__207_0
Mazzoleni, Dario. Boundedness of minimizers for spectral problems in $\mathbb R^N$. Rendiconti del Seminario Matematico della Università di Padova, Tome 135 (2016), pp. 207-221. doi : 10.4171/RSMUP/135-12. http://www.numdam.org/articles/10.4171/RSMUP/135-12/
Cité par Sources :