Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions
[Pourquoi les algèbres de Jordan sont-elles naturelles en statistiques ? La régression quadratique implique la distribution de Wishart]
Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 1, pp. 129-144.

Si l’espace 𝒬 des formes quadratiques sur n est décomposé en une somme directe 𝒬 1 ...𝒬 k et si X et Y sont des variables aléatoires indépendantes de n , supposons qu’il existe un nombre réel a tel que E(X|X+Y)=a(X+Y) ainsi que des nombres réels distincts b 1 ,...,b k tels que E(q(X)|X+Y)=b i q(X+Y) pour tout q de 𝒬 i . Nous montrons que cela n’arrive que pour k=2, que lorsque n peut être structuré en algèbre de Jordan euclidienne et que lorsque X et Y suivent des lois de Wishart correspondant à cette structure.

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ...𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E(X|X+Y)=a(X+Y) and real distinct numbers b 1 ,...,b k such that E(q(X)|X+Y)=b i q(X+Y) for any q in 𝒬 i . We prove that this happens only when k=2, when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

DOI : 10.24033/bsmf.2603
Classification : 60H10, 62H05
Keywords: symmetric cones, random matrices, characterization of Wishart laws
Mot clés : cônes symétriques, matrices aléatoires, caractérisation des lois de Wishart
@article{BSMF_2011__139_1_129_0,
     author = {Letac, G. and Weso{\l}owski, J.},
     title = {Why {Jordan} algebras are natural in statistics: quadratic regression implies {Wishart} distributions},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {129--144},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {139},
     number = {1},
     year = {2011},
     doi = {10.24033/bsmf.2603},
     zbl = {1213.62089},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2603/}
}
TY  - JOUR
AU  - Letac, G.
AU  - Wesołowski, J.
TI  - Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions
JO  - Bulletin de la Société Mathématique de France
PY  - 2011
SP  - 129
EP  - 144
VL  - 139
IS  - 1
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2603/
DO  - 10.24033/bsmf.2603
LA  - en
ID  - BSMF_2011__139_1_129_0
ER  - 
%0 Journal Article
%A Letac, G.
%A Wesołowski, J.
%T Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions
%J Bulletin de la Société Mathématique de France
%D 2011
%P 129-144
%V 139
%N 1
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2603/
%R 10.24033/bsmf.2603
%G en
%F BSMF_2011__139_1_129_0
Letac, G.; Wesołowski, J. Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions. Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 1, pp. 129-144. doi : 10.24033/bsmf.2603. http://www.numdam.org/articles/10.24033/bsmf.2603/

[1] S. Andersson - « Invariant normal models », Ann. Statist. 3 (1975), p. 132-154. | MR | Zbl

[2] D. J. Bartlett - « On the theory of the statistical regression », Proc. Royal Soc. Edinburgh 53 (1933), p. 260-283. | JFM

[3] K. Bobecka & J. Wesołowski - « The Lukacs-Olkin-Rubin theorem without invariance of the “quotient” », Studia Math. 152 (2002), p. 147-160. | MR | Zbl

[4] E. M. Carter - « Characterization and testing problems in the complex Wishart distribution », Thèse, University of Toronto, 1975. | MR

[5] M. Casalis - « Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique », C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), p. 537-540. | MR | Zbl

[6] M. Casalis & G. Letac - « Characterization of the Jørgensen set in generalized linear models », Test 3 (1994), p. 145-162. | MR | Zbl

[7] -, « The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones », Ann. Statist. 24 (1996), p. 763-786. | MR | Zbl

[8] M. L. Eaton - Multivariate statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., 1983. | MR | Zbl

[9] J. Faraut & A. Korányi - Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994, Oxford Science Publications. | MR | Zbl

[10] N. R. Goodman - « Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction) », Ann. Math. Statist. 34 (1963), p. 152-177. | MR | Zbl

[11] S. Gyndikin - « Invariant generalized functions in homogeneous spaces », J. Funct. Anal. Appl. 9 (1975), p. 50-52. | Zbl

[12] S. T. Jensen - « Covariance hypotheses which are linear in both the covariance and the inverse covariance », Ann. Statist. 16 (1988), p. 302-322. | MR | Zbl

[13] R. G. Laha & E. Lukacs - « On a problem connected with quadratic regression », Biometrika 47 (1960), p. 335-343. | MR | Zbl

[14] M. Lassalle - « Algèbre de Jordan et ensemble de Wallach », Invent. Math. 89 (1987), p. 375-393. | MR | Zbl

[15] G. Letac - « Le problème de la classification des familles exponentielles naturelles de 𝐑 d ayant une fonction variance quadratique », in Probability measures on groups, IX (Oberwolfach, 1988), Lecture Notes in Math., vol. 1379, Springer, 1989, p. 192-216. | MR | Zbl

[16] G. Letac & H. Massam - « Quadratic and inverse regressions for Wishart distributions », Ann. Statist. 26 (1998), p. 573-595. | MR | Zbl

[17] G. Letac & J. Wesołowski - « Laplace transforms which are negative powers of quadratic polynomials », Trans. Amer. Math. Soc. 360 (2008), p. 6475-6496. | MR | Zbl

[18] E. Lukacs - « A characterization of the gamma distribution », Ann. Math. Statist. 26 (1955), p. 319-324. | MR | Zbl

[19] M. L. Mehta - Random matrices, third éd., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. | MR | Zbl

[20] R. J. Muirhead - Aspects of multivariate statistical theory, John Wiley & Sons Inc., 1982. | MR | Zbl

[21] I. Olkin & H. Rubin - « A characterization of the Wishart distribution », Ann. Math. Statist. 33 (1962), p. 1272-1280. | MR | Zbl

[22] S. D. Peddada & D. S. P. Richards - « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab. 19 (1991), p. 868-874. | MR | Zbl

[23] D. N. Shanbhag - « The Davidson-Kendall problem and related results on the structure of the Wishart distribution », Austr. J. Statist. 30A (1988), p. 272-280. | Zbl

[24] Y. H. Wang - « Extensions of Lukacs' characterization of the gamma distribution », in Analytical methods in probability theory (Oberwolfach, 1980), Lecture Notes in Math., vol. 861, Springer, 1981, p. 166-177. | MR | Zbl

[25] J. Wishart - « The generalised product moment distribution in samples from a normal multivariate population », Biometrika 20A (1928), p. 32-52. | JFM

Cité par Sources :