[Calcul et dilatations]
Nous donnons une condition nécessaire et suffisante en termes de théorèmes de dilatation pour que le calcul d’un opérateur sectoriel soit borné. Nous montrons par exemple que, si engendre un semigroupe analytique borné sur un espace UMD, alors le calcul de est borné si et seulement si admet une dilatation en un groupe borné sur . Ceci généralise un résultat de C. Le Merdy sur les espaces de Hilbert. Si est un espace , on peut choisir un autre espace à la place de .
We characterise the boundedness of the calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if generates a bounded analytic semigroup on a UMD space, then the calculus of is bounded if and only if has a dilation to a bounded group on . This generalises a Hilbert space result of C.LeMerdy. If is an space we can choose another space in place of .
Mots clés : $H^\infty $ functional calculus, dilation theorems, spectral operators, square functions, $C_0$ groups, umd spaces
@article{BSMF_2006__134_4_487_0, author = {Fr\"ohlich, Andreas M. and Weis, Lutz}, title = {$H^\infty $ calculus and dilatations}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {487--508}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {134}, number = {4}, year = {2006}, doi = {10.24033/bsmf.2520}, mrnumber = {2364942}, zbl = {1168.47015}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2520/} }
TY - JOUR AU - Fröhlich, Andreas M. AU - Weis, Lutz TI - $H^\infty $ calculus and dilatations JO - Bulletin de la Société Mathématique de France PY - 2006 SP - 487 EP - 508 VL - 134 IS - 4 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2520/ DO - 10.24033/bsmf.2520 LA - en ID - BSMF_2006__134_4_487_0 ER -
%0 Journal Article %A Fröhlich, Andreas M. %A Weis, Lutz %T $H^\infty $ calculus and dilatations %J Bulletin de la Société Mathématique de France %D 2006 %P 487-508 %V 134 %N 4 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2520/ %R 10.24033/bsmf.2520 %G en %F BSMF_2006__134_4_487_0
Fröhlich, Andreas M.; Weis, Lutz. $H^\infty $ calculus and dilatations. Bulletin de la Société Mathématique de France, Tome 134 (2006) no. 4, pp. 487-508. doi : 10.24033/bsmf.2520. http://www.numdam.org/articles/10.24033/bsmf.2520/
[1] « The Kato square root problem for higher order elliptic operators and systems on », J. Evol. Equ. 1 (2001), p. 361-385. | MR | Zbl
, , & -[2] Square root problem for divergence operators and related topics, Astérisque, vol. 249, Soc. Math. France, 1998. | Numdam | MR | Zbl
& -[3] « Martingale transforms and the geometry of Banach spaces », Springer Lecture Notes in Math., vol. 860, 1981, p. 35-50. | MR | Zbl
-[4] « Banach space operators with a bounded functional calculus », J. Aust. Math. Soc. (Ser. A) 60 (1996), p. 51-89. | MR | Zbl
, , & -[5] -boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs Amer. Math. Soc., vol. 788, 2003. | Zbl
, & -[6] Linear Operators III - Spectral Operators, John Wiley & Sons Inc., 1972. | MR | Zbl
& -[7] One-Parameter Semigroups for Linear Evolution Equations, Springer, 1999. | MR | Zbl
& -[8] « -Kalkül und Dilatationen », Thèse, University of Karlsruhe, 2003, http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2003/ mathematik/8.
-[9] « Functional calculi for linear operators in vector-valued -spaces via the transference principle », Adv. Differ. Equ. 3 (1998), p. 847-872. | MR | Zbl
& -[10] « A remark on sectorial operators with an -calculus, Trends in Banach spaces and operator theory », Contemp. Math. 321 (2003), p. 91-99. | MR | Zbl
-[11] « Perturbation and interpolation theorems for the calculus with applications to differential operators », submitted. | Zbl
, & -[12] « Euclidean structures and their applications to spectral theory », in preparation.
& -[13] -, « The -functional calculus and square function estimates », in preparation.
[14] -, « The -calculus and sums of closed operators », Math. Ann. 321 (2001), p. 319-345. | MR | Zbl
[15] « Maximal regularity for parabolic equations, Fourier multiplier theorems, and functional calculus », in preparation. | Zbl
& -[16] « A generalized functional calculus for operators on subspaces of and application to maximal regularity », Ill. J. Math. 42 (1998), p. 470-480. | MR | Zbl
& -[17] « -functional calculus and applications to maximal regularity », Publ. Math. UFR Sci. Tech. Besançon 16 (1998), p. 41-77. | MR | Zbl
-[18] -, « The similarity problem for bounded analytic semigroups on Hilbert space », Semigroup Forum 56 (1998), p. 205-224. | MR | Zbl
[19] « Operators which have an functional calculus », Proc. Cent. Math. Anal. Aust. Natl. Univ. 14 (1986), p. 210-231. | MR | Zbl
-[20] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., vol. 94, Cambridge University Press, 1989. | MR | Zbl
-[21] The Adjoint of a Semigroup of Linear Operators, Springer Lecture Notes in Math., vol. 1529, 1993. | MR | Zbl
-[22] « The holomorphic functional calculus for sectorial operators », submitted.
-Cité par Sources :