@article{BSMF_1999__127_4_473_0, author = {Iftimie, Drago\c{s}}, title = {The {3D} {Navier-Stokes} equations seen as a perturbation of the {2D} {Navier-Stokes} equations}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {473--517}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {127}, number = {4}, year = {1999}, doi = {10.24033/bsmf.2358}, mrnumber = {2001e:35139}, zbl = {0946.35059}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2358/} }
TY - JOUR AU - Iftimie, Dragoş TI - The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations JO - Bulletin de la Société Mathématique de France PY - 1999 SP - 473 EP - 517 VL - 127 IS - 4 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2358/ DO - 10.24033/bsmf.2358 LA - en ID - BSMF_1999__127_4_473_0 ER -
%0 Journal Article %A Iftimie, Dragoş %T The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations %J Bulletin de la Société Mathématique de France %D 1999 %P 473-517 %V 127 %N 4 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2358/ %R 10.24033/bsmf.2358 %G en %F BSMF_1999__127_4_473_0
Iftimie, Dragoş. The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations. Bulletin de la Société Mathématique de France, Tome 127 (1999) no. 4, pp. 473-517. doi : 10.24033/bsmf.2358. http://www.numdam.org/articles/10.24033/bsmf.2358/
[1] Large-eigenvalue global existence and regularity results for the Navier-Stokes equation, J. Diff. Equations, t. 127, n° 2, 1996, p. 365-390. | MR | Zbl
. -[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., t. 14, n° 2, 1981, p. 209-246. | Numdam | MR | Zbl
. -[3] Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., t. 23, n° 1, 1992, p. 20-28. | MR | Zbl
. -[4] Fluides parfaits incompressibles, Astérisque, 230, 1995, p. 177. | Numdam | MR | Zbl
. -[5] Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Diff. Equations, t. 121, n° 2, 1995, p. 314-328. | MR | Zbl
, . -[6] Littlewood-Paley and multiplier theory. - Springer-Verlag, Berlin, 1977. | MR | Zbl
, . -[7] The resolution of the Navier-Stokes equations in anisotropic spaces, Rev. Mat. Iberoamericana, t. 15, n° 1, 1999. | MR | Zbl
. -[8] Asymptotic analysis of the Navier-Stokes equations in thin domains, Topol. Methods Nonlinear Anal., t. 10, n° 2, 1997, p. 249-282. | MR | Zbl
, , . -[9] Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., t. 159, n° 2, 1994, p. 329-341. | MR | Zbl
, , , . -[10] Navier-Stokes equations on thin 3D domains, I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., t. 6, n° 3, 1993, p. 503-568. | MR | Zbl
, . -[11] Navier-Stokes equations on thin 3D domains, II. Global regularity of spatially periodic solutions, Nonlinear partial differential equations and their applications. - Collège de France Seminar, Vol. XI, Longman Sci. Tech., Harlow, 1994, p. 205-247. | MR | Zbl
, . -[12] Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Diff. Equations, t. 1, n° 4, 1996, p. 499-546. | MR | Zbl
, . -[13] Navier-Stokes equations in thin spherical domains, Optimization methods in partial differential equations (South Hadley, MA, 1996). - Amer. Math. Soc., Providence, RI, 1997, p. 281-314. | MR | Zbl
, . -Cité par Sources :