@article{BSMF_1993__121_1_13_0, author = {Sen, Shankar}, title = {An infinite dimensional {Hodge-Tate} theory}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {13--34}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {121}, number = {1}, year = {1993}, doi = {10.24033/bsmf.2199}, mrnumber = {94e:11121}, zbl = {0786.11067}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2199/} }
TY - JOUR AU - Sen, Shankar TI - An infinite dimensional Hodge-Tate theory JO - Bulletin de la Société Mathématique de France PY - 1993 SP - 13 EP - 34 VL - 121 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2199/ DO - 10.24033/bsmf.2199 LA - en ID - BSMF_1993__121_1_13_0 ER -
Sen, Shankar. An infinite dimensional Hodge-Tate theory. Bulletin de la Société Mathématique de France, Tome 121 (1993) no. 1, pp. 13-34. doi : 10.24033/bsmf.2199. http://www.numdam.org/articles/10.24033/bsmf.2199/
[1] Commutative Algebra. - Hermann, Paris, 1972. | MR
. -[2] Topological Vector Spaces, Chap. 1-5. - Springer-Verlag, Berlin, 1987. | MR | Zbl
. -[3] Homological Algebra. - Princeton, 1956. | MR | Zbl
and . -[4] On p-adic analytic families of Galois representations, Compos. Math., t. 59, 1986, p. 231-264. | Numdam | MR | Zbl
and . -[5] Deforming Galois representations in Galois Groups over Q, Proceedings of the March 1987 MSRI Worshop, Y. Ihara, K. Ribet and J.-P. Serre, eds., Springer-Verlag, 1989, p. 385-437. | Zbl
. -[6] Two-dimensional p-adic Galois representations unramified away from p, Compos. Math., t. 74, 1990, p. 115-133. | Numdam | MR | Zbl
. -[7] Continuous cohomology and p-adic Galois representations, Invent. Math., t. 62, 1980, p. 89-116. | MR | Zbl
. -[8] The analytic variation of p-adic Hodge structure, Ann. of Math., t. 127, 1988, p. 647-661. | MR | Zbl
. -[9] Groupes algébriques associés aux modules de Hodge-Tate, in Journées de Géométrie Algébrique de Rennes, Astérisque, t. 65, 1979, p. 155-187. | Numdam | MR | Zbl
. -[10] p-divisible groups, Proc. Conf. Local Fields, Springer-Verlag, Heidelberg 1967, p. 158-183. | MR | Zbl
. -Cité par Sources :