@article{BSMF_1987__115__391_0, author = {Murty, M.Ram and Murty, V.Kumar and Shorey, T.N.}, title = {Odd values of the {Ramanujan} $\tau $-function}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {391--395}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {115}, year = {1987}, doi = {10.24033/bsmf.2083}, mrnumber = {89c:11071}, zbl = {0635.10020}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2083/} }
TY - JOUR AU - Murty, M.Ram AU - Murty, V.Kumar AU - Shorey, T.N. TI - Odd values of the Ramanujan $\tau $-function JO - Bulletin de la Société Mathématique de France PY - 1987 SP - 391 EP - 395 VL - 115 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2083/ DO - 10.24033/bsmf.2083 LA - en ID - BSMF_1987__115__391_0 ER -
%0 Journal Article %A Murty, M.Ram %A Murty, V.Kumar %A Shorey, T.N. %T Odd values of the Ramanujan $\tau $-function %J Bulletin de la Société Mathématique de France %D 1987 %P 391-395 %V 115 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2083/ %R 10.24033/bsmf.2083 %G en %F BSMF_1987__115__391_0
Murty, M.Ram; Murty, V.Kumar; Shorey, T.N. Odd values of the Ramanujan $\tau $-function. Bulletin de la Société Mathématique de France, Tome 115 (1987), pp. 391-395. doi : 10.24033/bsmf.2083. http://www.numdam.org/articles/10.24033/bsmf.2083/
[1] A sharpening of the bounds for linear forms in logarithms I, Acta Arith., Vol. 21, 1972, pp. 117-129. | MR | Zbl
,[2] A sharpening of the bounds for linear forms in logarithms II, Acta Arith., Vol. 24, 1973, pp. 33-36. | MR | Zbl
,[3] An effective refinement of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk., Vol. 35, 1971, pp. 973-900.
,[4] On certain arithmetical functions, Trans. Cambr. Phil. Soc., Vol. 22, 1916, pp. 159-184.
,[5] Rational approximations to algebraic numbers, Mathematika, Vol. 2, 1955, pp. 1-20. | MR | Zbl
,[6] Divisibilité de certaines fonction arithmétiques, L'Ens. Math., Vol. 22, 1976, pp. 227-260. | MR | Zbl
,[7] Hyperelliptic diophantine equations and class numbers of ideals (Russian), Acta Arith., Vol. 30, 1976, pp. 95-108. | MR | Zbl
,Cité par Sources :