@article{BSMF_1978__106__289_0, author = {Van Daele, Alfons}, title = {A framework to study commutation problems}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {289--309}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {106}, year = {1978}, doi = {10.24033/bsmf.1874}, mrnumber = {80k:46066}, zbl = {0389.46047}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.1874/} }
TY - JOUR AU - Van Daele, Alfons TI - A framework to study commutation problems JO - Bulletin de la Société Mathématique de France PY - 1978 SP - 289 EP - 309 VL - 106 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.1874/ DO - 10.24033/bsmf.1874 LA - en ID - BSMF_1978__106__289_0 ER -
%0 Journal Article %A Van Daele, Alfons %T A framework to study commutation problems %J Bulletin de la Société Mathématique de France %D 1978 %P 289-309 %V 106 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.1874/ %R 10.24033/bsmf.1874 %G en %F BSMF_1978__106__289_0
Van Daele, Alfons. A framework to study commutation problems. Bulletin de la Société Mathématique de France, Tome 106 (1978), pp. 289-309. doi : 10.24033/bsmf.1874. http://www.numdam.org/articles/10.24033/bsmf.1874/
[1] Poids dual sur un produit croisé, C. R. Acad. Sc. Paris, t. 278, 1974, série A, p. 937-940. | MR | Zbl
. -[2] Duality for weights on covariant systems and its applications, Thesis, University of California, Los Angeles, 1975.
. -[3] A commutation theorem and duality for free Bose fields, Comm. math. Phys., t. 39, 1974, p. 153-164. | MR | Zbl
. -[4] Commutation theorems and generalized commutation relations, Bull. Soc. math. France, t. 104, 1976, p. 205-224. | Numdam | MR | Zbl
. -[5] The commutation theorem for tensor products of von Neumann algebras, Bull. London math. Soc., t. 7, 1975, p. 257-260. | MR | Zbl
and . -[6] A bounded operator approach to Tomita-Takesaki theory, Pacific. J. Math., t. 69, 1977, p. 187-221. | MR | Zbl
and . -[7] Crossed products of commutation systems (to appear).
and . -[8] A note on the commutation theorem for tensor products of von Neumann algebras, Proc. Amer. math. Soc., t. 61, 1976, p. 179-180. | MR | Zbl
, and . -[9] A necessary and sufficient condition for a von Neumann algebra to be in standard form, J. London math. Soc., t. 15, 1977, p. 147-154. | MR | Zbl
, and . -[10] Tomita's theory of modular Hilbert algebras and its applications. - Berlin, Springer-Verlag, 1970 (Lecture Notes in Mathematics, 128). | MR | Zbl
. -[11] Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., Uppsala, t. 131, 1973, p. 249-310. | MR | Zbl
. -[12] Standard forms of von Neumann algebras, "5th Functional analysis symposium of the mathematical society of Japan, [1967. Sendai]". - Sendai, Tôhoku University, Mathematical Institute, 1967.
. -Cité par Sources :