@article{BSMF_1972__100__129_0, author = {Cauty, Robert}, title = {Sur les sous-espaces des complexes simpliciaux}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {129--155}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {100}, year = {1972}, doi = {10.24033/bsmf.1733}, mrnumber = {48 #5023}, zbl = {0243.54027}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/bsmf.1733/} }
TY - JOUR AU - Cauty, Robert TI - Sur les sous-espaces des complexes simpliciaux JO - Bulletin de la Société Mathématique de France PY - 1972 SP - 129 EP - 155 VL - 100 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.1733/ DO - 10.24033/bsmf.1733 LA - fr ID - BSMF_1972__100__129_0 ER -
%0 Journal Article %A Cauty, Robert %T Sur les sous-espaces des complexes simpliciaux %J Bulletin de la Société Mathématique de France %D 1972 %P 129-155 %V 100 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.1733/ %R 10.24033/bsmf.1733 %G fr %F BSMF_1972__100__129_0
Cauty, Robert. Sur les sous-espaces des complexes simpliciaux. Bulletin de la Société Mathématique de France, Tome 100 (1972), pp. 129-155. doi : 10.24033/bsmf.1733. http://www.numdam.org/articles/10.24033/bsmf.1733/
[1] Some generalizations of metric spaces, Pacific J. of Math., t. 11, 1962, p. 105-125. | MR | Zbl
.[2] Note on CW-polytopes, Portug. Math., Lisboa, t. 11, 1952, p. 7-10b. | MR | Zbl
.[3] A duality property of nerves, Fund. Math., Warszawa, t. 59, 1966, p. 213-219. | MR | Zbl
.[4] Outline of general topology. Amsterdam, North-Holland publishing Company, 1968. | MR | Zbl
.[5] Theory of retracts. Detroit, Wayne State University Press, 1965. | MR | Zbl
.[6] A category slightly larger than the metric and the CW-categories, Michigan math. J., t. 15, 1968, p. 193-214. | MR | Zbl
.[7] The finite topology of a linear space, Archiv der Math., Basel, t. 14, 1963, p. 55-58. | MR | Zbl
and .[8] Weak products of spaces and complexes, Fund. Math., Warszawa, t. 53, 1963, p. 1-12. | MR | Zbl
.[9] Homotopy theory of infinite dimensional manifolds, Topology, London, t. 5, 1966, p. 1-16. | MR | Zbl
.Cité par Sources :