@article{BSMF_1969__97__369_0, author = {Tamura, T.}, title = {Commutative semigroups whose lattice of congruences is a chain}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {369--380}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {97}, year = {1969}, doi = {10.24033/bsmf.1689}, mrnumber = {41 #5527}, zbl = {0191.01705}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.1689/} }
TY - JOUR AU - Tamura, T. TI - Commutative semigroups whose lattice of congruences is a chain JO - Bulletin de la Société Mathématique de France PY - 1969 SP - 369 EP - 380 VL - 97 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.1689/ DO - 10.24033/bsmf.1689 LA - en ID - BSMF_1969__97__369_0 ER -
%0 Journal Article %A Tamura, T. %T Commutative semigroups whose lattice of congruences is a chain %J Bulletin de la Société Mathématique de France %D 1969 %P 369-380 %V 97 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.1689/ %R 10.24033/bsmf.1689 %G en %F BSMF_1969__97__369_0
Tamura, T. Commutative semigroups whose lattice of congruences is a chain. Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 369-380. doi : 10.24033/bsmf.1689. http://www.numdam.org/articles/10.24033/bsmf.1689/
[1] Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. | MR | Zbl
. -[2] The algebraic theory of semigroups, vol. 1. - Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). | MR | Zbl
and . -[3] Abelian groups. - Budapest, Publishing House of Hungarian Academy of Science, 1958. | MR | Zbl
. -[4] Group theory. - Princeton (New Jersey), D. Van Nostrand, 1965. | MR | Zbl
. -[5] Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. | Zbl
. -[6] Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. | MR | Zbl
. -[7] On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. | MR | Zbl
and . -[8] On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. | MR | Zbl
. -[9] Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. | MR | Zbl
and . -[10] Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. | MR | Zbl
. -[11] The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. | MR | Zbl
. -[12] Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. | MR | Zbl
. -[13] Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. | MR | Zbl
. -[14] Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. | MR | Zbl
. -[15] Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. | MR | Zbl
. -[16] Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. | MR | Zbl
. -[17] H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). | Zbl
. -Cité par Sources :