A generalized commutation relation for the regular representation
Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 289-297.
@article{BSMF_1969__97__289_0,
     author = {Takesaki, M.},
     title = {A generalized commutation relation for the regular representation},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {289--297},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {97},
     year = {1969},
     doi = {10.24033/bsmf.1683},
     mrnumber = {40 #7831},
     zbl = {0188.20101},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.1683/}
}
TY  - JOUR
AU  - Takesaki, M.
TI  - A generalized commutation relation for the regular representation
JO  - Bulletin de la Société Mathématique de France
PY  - 1969
SP  - 289
EP  - 297
VL  - 97
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.1683/
DO  - 10.24033/bsmf.1683
LA  - en
ID  - BSMF_1969__97__289_0
ER  - 
%0 Journal Article
%A Takesaki, M.
%T A generalized commutation relation for the regular representation
%J Bulletin de la Société Mathématique de France
%D 1969
%P 289-297
%V 97
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.1683/
%R 10.24033/bsmf.1683
%G en
%F BSMF_1969__97__289_0
Takesaki, M. A generalized commutation relation for the regular representation. Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 289-297. doi : 10.24033/bsmf.1683. http://www.numdam.org/articles/10.24033/bsmf.1683/

[1] Bourbaki (N.). - Intégration, chap. 7-8. - Paris, Hermann, 1963 (Act. scient. et ind., 1306 ; Bourbaki, 29). | Zbl

[2] Dixmier (J.). - Les algèbres d'opérateurs dans l'espace hilbertien. - Paris, Gauthier-Villars, 1957. | Zbl

[3] Dixmier (J.). - Les C*-algèbres et leurs représentations. - Paris, Gauthier-Villars, 1964 (Cahiers scientifiques, 29). | MR | Zbl

[4] Dixmier (J.). - Algèbres quasi-unitaires, Comment. Math. Helvet., t. 26, 1952, p. 275-322. | MR | Zbl

[5] Doplicher (S.), Kastler (D.) and Robinson (D. W.). - Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys., Berlin, t. 3, 1966, p. 1-28. | MR | Zbl

[6] Fell (J. M. G.). - An extension of Mackey's method to representations of algebraic bundles (to appear).

[7] Glimm (J.). - Families of induced representations, Pacific J. Math., t. 12, 1962, p. 885-911. | MR | Zbl

[8] Loomis (L. H.). - Note on a theorem of Mackey, Duke Math. J., t. 19, 1952, p. 641-645. | MR | Zbl

[9] Mackey (G. W.). - A theorem of Stone and von Neumann, Duke Math. J., t. 16, 1949, p. 313-326. | MR | Zbl

[10] Mackey (G. W.). - Induced representations of locally compact groups, I, Annals of Math., Series 2, t. 55, 1952, p. 101-139. | MR | Zbl

[11] Mackey (G. W.). - Unitary representations of group extensions, Acta Math., t. 99, 1958, p. 265-311. | MR | Zbl

[12] Mackey (G. W.). - Infinite-dimensional group representations, Bull. Amer. math. Soc., t. 69, 1963, p. 628-686. | MR | Zbl

[13] Nakamura (M.) and Umegaki (H.). - Heisenberg's commutation relation and the Plancherel theorem, Proc. Japan Acad., t. 37, 1961, p. 239-242. | MR | Zbl

[14] Von Neumann (J.). - Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Annalen, t. 104, 1931, p. 570-578. | JFM | Zbl

[15] Takesaki (M.). - On some representations of C*-algebras, Tohoku math. J., t. 65, 1963, p. 79-95. | MR | Zbl

[16] Takesaki (M.). - Covariant representations of C*-algebras and their locally compact automorphism groups, Acta Math., t. 119, 1967, p. 273-303. | MR | Zbl

[17] Takesaki (M.). - A characterization of group algebra as a converse of Tanneka-Stinespring-Tatsuuma duality theorem (to appear).

[18] Takesaki (M.). - A liminal crossed product of a uniformly hyperfinite C*-algebra by a compact abelian automorphism group (to appear).

[19] Turumaru (T.). - Crossed product of operator algebras, Tohoku math. J., t. 10, 1958, p. 355-365. | MR | Zbl

[20] Zeller-Meier (G.). - Produits croisés d'une C*-algèbre par un groupe d'automorphismes (to appear).

[21] Araki (H.). - A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. math. Phys., t. 4, 1963, p. 1343-1362. | MR | Zbl

Cité par Sources :