@article{BSMF_1969__97__275_0, author = {Subramanian, H.}, title = {Integer-valued continuous functions}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {275--283}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {97}, year = {1969}, doi = {10.24033/bsmf.1681}, mrnumber = {40 #7820}, zbl = {0186.35301}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.1681/} }
TY - JOUR AU - Subramanian, H. TI - Integer-valued continuous functions JO - Bulletin de la Société Mathématique de France PY - 1969 SP - 275 EP - 283 VL - 97 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.1681/ DO - 10.24033/bsmf.1681 LA - en ID - BSMF_1969__97__275_0 ER -
Subramanian, H. Integer-valued continuous functions. Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 275-283. doi : 10.24033/bsmf.1681. https://www.numdam.org/articles/10.24033/bsmf.1681/
[1] Rings of continuous integer-valued functions and nonstandard arithmetic, Trans. Amer. math. Soc., t. 118, 1965, p. 498-525. | MR | Zbl
. -[2] Partially ordered algebraic systems. - Oxford, Pergamon Press, 1963 (International Series of Monographs on pure and applied Mathematics, 28). | MR | Zbl
. -[3] On the equivalence of the ring, lattice, and semigroup of continuous functions, Proc. Amer. math. Soc., t. 7, 1956, p. 959-960. | MR | Zbl
. -[4] Lattice-ordered rings and function rings, Pacific J. Math., t. 12, 1962, p. 533-566. | MR | Zbl
and . -[5] The space of minimal prime ideals of a commutative ring, Trans. Amer. math. Soc., t. 115, 1965, p. 110-130. | MR | Zbl
and . -[6] Minimal prime ideals in commutative semigroups, Proc. London math. Soc., t. 13, 1963, p. 31-50. | MR | Zbl
. -[7] Rings of integer-valued continuous functions, Trans. Amer. math. Soc., t. 100, 1961, p. 371-394. | MR | Zbl
. -[8] Rings of integer-valued functions, 29th Annual Conference of the Indian math. Soc. [1963, Madras], Abstracts, Mathematics Student, t. 32, 1964, nos 3-4, Appendix, p. 28.
. -[9] Kaplansky's Theorem for f-rings, Math. Annalen, t. 179, 1968, p. 70-73. | MR | Zbl
. -[10] l-prime ideals in f-rings, Bull. Soc. math. France, t. 95, 1967, p. 193-204. | Numdam | MR | Zbl
. -- Homomorphisms from
C ( X , Z ) into a ring of continuous functions, Algebra universalis, Volume 79 (2018) no. 2 | DOI:10.1007/s00012-018-0509-9 - Concerning maximal
ℓ -ideals of rings of continuous integer-valued functions, Algebra universalis, Volume 72 (2014) no. 4, p. 359 | DOI:10.1007/s00012-014-0306-z - Rings of continuous functions. Algebraic aspects, Journal of Mathematical Sciences, Volume 71 (1994) no. 2, p. 2364 | DOI:10.1007/bf02111022
Cité par 3 documents. Sources : Crossref