Sur certaines équations paraboliques non linéaires
Bulletin de la Société Mathématique de France, Tome 93 (1965), pp. 155-175.
@article{BSMF_1965__93__155_0,
     author = {Lions, Jacques-Louis},
     title = {Sur certaines \'equations paraboliques non lin\'eaires},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {155--175},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {93},
     year = {1965},
     doi = {10.24033/bsmf.1620},
     mrnumber = {33 #2966},
     zbl = {0132.10601},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.1620/}
}
TY  - JOUR
AU  - Lions, Jacques-Louis
TI  - Sur certaines équations paraboliques non linéaires
JO  - Bulletin de la Société Mathématique de France
PY  - 1965
SP  - 155
EP  - 175
VL  - 93
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.1620/
DO  - 10.24033/bsmf.1620
LA  - fr
ID  - BSMF_1965__93__155_0
ER  - 
%0 Journal Article
%A Lions, Jacques-Louis
%T Sur certaines équations paraboliques non linéaires
%J Bulletin de la Société Mathématique de France
%D 1965
%P 155-175
%V 93
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.1620/
%R 10.24033/bsmf.1620
%G fr
%F BSMF_1965__93__155_0
Lions, Jacques-Louis. Sur certaines équations paraboliques non linéaires. Bulletin de la Société Mathématique de France, Tome 93 (1965), pp. 155-175. doi : 10.24033/bsmf.1620. https://www.numdam.org/articles/10.24033/bsmf.1620/

[1] Aubin (J. P.). - Un théorème de compacité, C. R. Acad. Sc., t. 256, 1963, p. 5042-5044. | MR | Zbl

[2] Browder (F. E.). - Non linear elliptic boundary value problems, Bull. Amer. math. Soc., t. 69, 1963, p. 862-874. | MR | Zbl

[3] Browder (F. E.). - Strongly non linear parabolic boundary value problems, Amer. J. Math., t. 86, 1964, p. 339-357. | MR | Zbl

[4] Cohn (J.) and Nirenberg (L.). - Non coercive boundary value problem (à paraître).

[5] Kato (T.). - Non linear evolution equations in Banach spaces (à paraître).

[6] Leray (J.) et Lions (J.-L.). - Quelques résultats de Viik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. math. France, t. 93, 1965, p. 97-107. | Numdam | MR | Zbl

[7] Lions (J.-L.). - Équations différentielles opérationnelles dans les espaces de Hilbert, Centro Internazionale Matematico Estivo [30 mai-8 juin 1963] : Equazioni differenziale astratte, n° 2, 71 pages. - Roma, Cremonese, 1963. | Zbl

[8] Lions (J.-L.). - Singular perturbations and some non linear boundary value problems, Mathematical Research Center, University of Wisconsin, Report 421, 36 pages.

[9] Lions (J.-L.). - Quelques remarques sur certains problèmes d'évolution non linéaires, Congresso della Società Italiana per il Progresso delle Scienze [octobre 1964. Cagliari-Sassari] (à paraître). | Zbl

[10] Lions (J.-L.) et Peetre (J.). - Théorie de l'interpolation des opérateurs et applications (Ouvrage en préparation).

[11] Minty (G. J.). - Monotone (non linear) operators in Hilbert space, Duke math. J., t. 29, 1962, p. 341-346. | MR | Zbl

[12] Olejnik (O. A.). - Sur un problème de Fichera [en russe], Doklady Akad. Nauk S.S.S.R., t. 157, 1964, p. 1297-1300. | Zbl

[13] Viik (I. M.). - Systèmes différentiels quasi-linéaires fortement elliptiques sous forme divergente [en russe], Trudy Moskovskogo Mat. Obč., t. 12, 1963, p. 125-184.

[14] Viik (I. M.). - Résolution de problèmes aux limites pour équations paraboliques quasi-linéaires d'ordre quelconque [en russe], Mat. Sbornik, t. 59, 1962, p. 289-335.

  • Stefanelli, Ulisse The weighted Inertia-Energy-Dissipation principle, Mathematical Models and Methods in Applied Sciences, Volume 35 (2025) no. 02, p. 223 | DOI:10.1142/s0218202525400019
  • Audrito, Alessandro On the existence and Hölder regularity of solutions to some nonlinear Cauchy–Neumann problems, Journal of Evolution Equations, Volume 23 (2023) no. 3 | DOI:10.1007/s00028-023-00899-7
  • López-Soriano, Rafael; Montoro, Luigi; Sciunzi, Berardino Symmetry and monotonicity results for solutions of vectorial 𝑝-Stokes systems, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, p. 3493 | DOI:10.1090/tran/8867
  • Caraballo, Tomás; Cavaterra, Cecilia A 3D isothermal model for nematic liquid crystals with delay terms, Discrete and Continuous Dynamical Systems - S, Volume 15 (2022) no. 8, p. 2117 | DOI:10.3934/dcdss.2022097
  • Bathory, Michal; Stefanelli, Ulisse Variational resolution of outflow boundary conditions for incompressible Navier–Stokes, Nonlinearity, Volume 35 (2022) no. 11, p. 5553 | DOI:10.1088/1361-6544/ac8fd8
  • Abdellaoui, M. Asymptotic behavior result for obstacle parabolic problems with measure data, Advances in Operator Theory, Volume 6 (2021) no. 1 | DOI:10.1007/s43036-020-00113-2
  • Scarpa, Luca; Stefanelli, Ulisse Stochastic PDEs via convex minimization, Communications in Partial Differential Equations, Volume 46 (2021) no. 1, p. 66 | DOI:10.1080/03605302.2020.1831017
  • Audrito, Alessandro; Serra, Enrico; Tilli, Paolo A minimization procedure to the existence of segregated solutions to parabolic reaction-diffusion systems, Communications in Partial Differential Equations, Volume 46 (2021) no. 12, p. 2268 | DOI:10.1080/03605302.2021.1931884
  • Abbatiello, Anna Time-Periodic Weak Solutions to Incompressible Generalized Newtonian Fluids, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00576-0
  • Rossi, Riccarda; Savaré, Giuseppe; Segatti, Antonio; Stefanelli, Ulisse Weighted Energy-Dissipation principle for gradient flows in metric spaces, Journal de Mathématiques Pures et Appliquées, Volume 127 (2019), p. 1 | DOI:10.1016/j.matpur.2018.06.022
  • Abbatiello, Anna; Maremonti, Paolo Existence of Regular Time-Periodic Solutions to Shear-Thinning Fluids, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 2 | DOI:10.1007/s00021-019-0435-4
  • Davoli, Elisa; Stefanelli, Ulisse Dynamic Perfect Plasticity as Convex Minimization, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 672 | DOI:10.1137/17m1148864
  • Latocha, Andrzej Fast and Robust Online Dynamic System Identification, Advanced Solutions in Diagnostics and Fault Tolerant Control, Volume 635 (2018), p. 215 | DOI:10.1007/978-3-319-64474-5_18
  • Akagi, Goro; Melchionna, Stefano; Stefanelli, Ulisse Weighted Energy-Dissipation approach to doubly nonlinear problems on the half line, Journal of Evolution Equations, Volume 18 (2018) no. 1, p. 49 | DOI:10.1007/s00028-017-0390-6
  • Ortiz, Michael; Schmidt, Bernd; Stefanelli, Ulisse A variational approach to Navier–Stokes, Nonlinearity, Volume 31 (2018) no. 12, p. 5664 | DOI:10.1088/1361-6544/aae722
  • Kieu, Thinh Numerical analysis for generalized Forchheimer flows of slightly compressible fluids, Numerical Methods for Partial Differential Equations, Volume 34 (2018) no. 1, p. 228 | DOI:10.1002/num.22194
  • Chen, Joe P.; Hinz, Michael; Teplyaev, Alexander From Non-symmetric Particle Systems to Non-linear PDEs on Fractals, Stochastic Partial Differential Equations and Related Fields, Volume 229 (2018), p. 503 | DOI:10.1007/978-3-319-74929-7_34
  • Melchionna, Stefano A variational principle for nonpotential perturbations of gradient flows of nonconvex energies, Journal of Differential Equations, Volume 262 (2017) no. 6, p. 3737 | DOI:10.1016/j.jde.2016.12.002
  • Jolly, Michael S.; Sadigov, Tural; Titi, Edriss S. Determining form and data assimilation algorithm for weakly damped and driven Korteweg–de Vries equation — Fourier modes case, Nonlinear Analysis: Real World Applications, Volume 36 (2017), p. 287 | DOI:10.1016/j.nonrwa.2017.01.010
  • Droniou, Jérôme; Eymard, Robert; Talbot, Kyle S. Convergence in C([0,T];L2(Ω)) of weak solutions to perturbed doubly degenerate parabolic equations, Journal of Differential Equations, Volume 260 (2016) no. 11, p. 7821 | DOI:10.1016/j.jde.2016.02.004
  • Ding, Yong; Sun, Xiaochun Uniqueness of weak solutions for fractional Navier-Stokes equations, Frontiers of Mathematics in China, Volume 10 (2015) no. 1, p. 33 | DOI:10.1007/s11464-014-0370-x
  • Crispo, F.; Maremonti, P. A high regularity result of solutions to modifiedp-Stokes equations, Nonlinear Analysis: Theory, Methods Applications, Volume 118 (2015), p. 97 | DOI:10.1016/j.na.2014.10.017
  • Fahrenwaldt, Matthias A. Sensitivity of life insurance reserves via Markov semigroups, Scandinavian Actuarial Journal, Volume 2015 (2015) no. 2, p. 124 | DOI:10.1080/03461238.2013.794436
  • Crispo, Francesca A Note on the Existence and Uniqueness of Time-Periodic Electro-rheological Flows, Acta Applicandae Mathematicae, Volume 132 (2014) no. 1, p. 237 | DOI:10.1007/s10440-014-9897-9
  • Cavaterra, Cecilia; Rocca, Elisabetta On a 3D isothermal model for nematic liquid crystals accounting for stretching terms, Zeitschrift für angewandte Mathematik und Physik, Volume 64 (2013) no. 1, p. 69 | DOI:10.1007/s00033-012-0219-7
  • Martínez-Aparicio, Pedro J.; Petitta, Francesco Parabolic equations with nonlinear singularities, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 1, p. 114 | DOI:10.1016/j.na.2010.08.023
  • Petryshyn, W. V. On the Approximation-Solvability of Nonlinear Functional Equations in Normed Linear Spaces, Numerical Analysis of Partial Differential Equations (2010), p. 341 | DOI:10.1007/978-3-642-11057-3_15
  • Lions, J. L. Quelques Problemés de la Theorie des Equations Non Linéaires D'évolution, Problems in Non-Linear Analysis (2010), p. 189 | DOI:10.1007/978-3-642-10998-0_7
  • Beirão da Veiga, H. On the global regularity of shear thinning flows in smooth domains, Journal of Mathematical Analysis and Applications, Volume 349 (2009) no. 2, p. 335 | DOI:10.1016/j.jmaa.2008.09.009
  • Guermond, Jean‐Luc On the use of the notion of suitable weak solutions in CFD, International Journal for Numerical Methods in Fluids, Volume 57 (2008) no. 9, p. 1153 | DOI:10.1002/fld.1853
  • Guermond, Jean-Luc; Prudhomme, Serge Issues for a Mathematical Definition of LES, Numerical Mathematics and Advanced Applications (2006), p. 796 | DOI:10.1007/978-3-540-34288-5_78
  • Beirão da Veiga, H. On the regularity of flows with Ladyzhenskaya Shear‐dependent viscosity and slip or non‐slip boundary conditions, Communications on Pure and Applied Mathematics, Volume 58 (2005) no. 4, p. 552 | DOI:10.1002/cpa.20036
  • Li, Fengquan Nonlinear degenerate parabolic equations with measure data, Nonlinear Analysis: Theory, Methods Applications, Volume 61 (2005) no. 7, p. 1269 | DOI:10.1016/j.na.2005.01.103
  • Guermond, J.-L.; Prudhomme, S. On the construction of suitable solutions to the Navier–Stokes equations and questions regarding the definition of large eddy simulation, Physica D: Nonlinear Phenomena, Volume 207 (2005) no. 1-2, p. 64 | DOI:10.1016/j.physd.2005.05.014
  • Beirão da Veiga, H. On Some Boundary Value Problems for Flows with Shear Dependent Viscosity, Variational Analysis and Applications, Volume 79 (2005), p. 161 | DOI:10.1007/0-387-24276-7_12
  • Guermond, Jean-Luc; Prudhomme, Serge Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 37 (2003) no. 6, p. 893 | DOI:10.1051/m2an:2003060
  • Andreucci, D.; Cirmi, G.R.; Leonardi, S.; Tedeev, A.F. Large Time Behavior of Solutions to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary, Journal of Differential Equations, Volume 174 (2001) no. 2, p. 253 | DOI:10.1006/jdeq.2000.3948
  • Temam, Roger Some Developments on Navier-Stokes Equations in the Second Half of the 20th Century, Development of Mathematics, 1950–2000 (2000), p. 1049 | DOI:10.1007/978-3-0348-8968-1_36
  • Dolcetta, Italo Capuzzo; Leoni, Fabiana On the Vanishing Viscosity Approximation of a Time Dependent Hamilton-Jacobi Equation, Recent Trends in Nonlinear Analysis (2000), p. 59 | DOI:10.1007/978-3-0348-8411-2_8
  • Ferone, Vincenzo; Posteraro, Maria Rosaria; Rakotoson, Jean-Michel Nonlinear parabolic equations with p-growth and unbounded data, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 328 (1999) no. 4, p. 291 | DOI:10.1016/s0764-4442(99)80212-2
  • Qingsong, Zou; Yan, Tian; Jingan, Lei Monotone iterative method for nonlinear discontinuous parabolic differential equations, Wuhan University Journal of Natural Sciences, Volume 3 (1998) no. 4, p. 389 | DOI:10.1007/bf02830034
  • Cirmi, G. R.; Porzio, M. M. L ∞-solutions for some nonlinear degenerate elliptic and parabolic equations, Annali di Matematica Pura ed Applicata, Volume 169 (1995) no. 1, p. 67 | DOI:10.1007/bf01759349
  • Paré;s, Carlos Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids, Applicable Analysis, Volume 43 (1992) no. 3-4, p. 245 | DOI:10.1080/00036819208840063
  • Dubinskii, Yu. A. High order nonlinear parabolic equations, Journal of Soviet Mathematics, Volume 56 (1991) no. 4, p. 2557 | DOI:10.1007/bf01097353
  • Vrabie, Ioan I. An existence result for a class of nonlinear evolution equations in Banach spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 6 (1982) no. 7, p. 711 | DOI:10.1016/0362-546x(82)90041-4
  • Vejvoda, Otto The abstract equations, Partial differential equations: time-periodic solutions (1982), p. 288 | DOI:10.1007/978-94-009-7672-6_8
  • Alduncin, G.; Oden, J. T. Analysis of Galerkin Approximations of a Class of Pseudomonotone Diffusion Problems, SIAM Journal on Mathematical Analysis, Volume 12 (1981) no. 6, p. 917 | DOI:10.1137/0512077
  • Dubinskii, Yu. A. Nonlinear elliptic and parabolic equations, Journal of Soviet Mathematics, Volume 12 (1979) no. 5, p. 475 | DOI:10.1007/bf01089137
  • Kenmochi, Nobuyuki Some nonlinear parabolic variational inequalities, Israel Journal of Mathematics, Volume 22 (1975) no. 3-4, p. 304 | DOI:10.1007/bf02761596
  • Petry, Walter Nonlinear Evolution Equations with Application to Parabolic Differential Equations, Mathematische Nachrichten, Volume 68 (1975) no. 1, p. 265 | DOI:10.1002/mana.19750680119
  • Kenmochi, Nobuyuki Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations, Hiroshima Mathematical Journal, Volume 4 (1974) no. 1 | DOI:10.32917/hmj/1206137159
  • Bibliographie, Operateurs Maximaux Monotones - Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, Volume 5 (1973), p. 173 | DOI:10.1016/s0304-0208(08)72388-0
  • Lions, J. L. Remarks on some nonlinear evolution problems arising in Bingham flows, Israel Journal of Mathematics, Volume 13 (1972) no. 1-2, p. 155 | DOI:10.1007/bf02760235
  • Gajewski, Herbert Über eine Klasse nichtlinearer abstrakter Wellengleichungen im Hilbert‐Raum, Mathematische Nachrichten, Volume 52 (1972) no. 1-6, p. 371 | DOI:10.1002/mana.19720520127
  • Jeffrey, A.; Kakutani, T. Weak Nonlinear Dispersive Waves: A Discussion Centered Around the Korteweg–De Vries Equation, SIAM Review, Volume 14 (1972) no. 4, p. 582 | DOI:10.1137/1014101
  • Ton, Bui An Nonlinear evolution equations in Banach spaces, Journal of Differential Equations, Volume 9 (1971) no. 3, p. 608 | DOI:10.1016/0022-0396(71)90027-1
  • Ton, Bui An On strongly nonlinear parabolic equations, Journal of Functional Analysis, Volume 7 (1971) no. 1, p. 147 | DOI:10.1016/0022-1236(71)90050-4
  • Kachurovskii, R. I. A class of nonlinear operator equations and certain equations of mechanics, Siberian Mathematical Journal, Volume 12 (1971) no. 2, p. 251 | DOI:10.1007/bf00969046
  • Kenmochi, Nobuyuki On the existence of solutions of some non-linear parabolic equations, Hiroshima Mathematical Journal, Volume 34 (1970) no. 2 | DOI:10.32917/hmj/1206138228
  • Raviart, P.A Sur la résolution numérique de l'équation ∂u∂t+u∂u∂x−∈∂∂x(∥∂u∂x∥∂u∂x)=0, Journal of Differential Equations, Volume 8 (1970) no. 1, p. 56 | DOI:10.1016/0022-0396(70)90039-2
  • Bardos, Claude; Brezis, Haim Sur une classe de problèmes d'évolution non linéaires, Journal of Differential Equations, Volume 6 (1969) no. 2, p. 345 | DOI:10.1016/0022-0396(69)90023-0
  • O'Malley, Robert E Topics in singular perturbations, Advances in Mathematics, Volume 2 (1968) no. 4, p. 365 | DOI:10.1016/0001-8708(68)90023-6
  • Temam, Roger Sur la stabilité et la convergence de la méthode des pas fractionnaires, Annali di Matematica Pura ed Applicata, Volume 79 (1968) no. 1, p. 191 | DOI:10.1007/bf02415183
  • Petryshyn, W. V. On the approximation-solvability of nonlinear equations, Mathematische Annalen, Volume 177 (1968) no. 2, p. 156 | DOI:10.1007/bf01350791
  • Browder, Felix E.; Ton, Bui An Nonlinear functional equations in Banach spaces and elliptic super-regularization, Mathematische Zeitschrift, Volume 105 (1968) no. 3, p. 177 | DOI:10.1007/bf01109897
  • Kachurovskii, R I NON-LINEAR MONOTONE OPERATORS IN BANACH SPACES, Russian Mathematical Surveys, Volume 23 (1968) no. 2, p. 117 | DOI:10.1070/rm1968v023n02abeh001239
  • Ton, Bui An Singular perturbations and nonlinear parabolic boundary value problems, Journal of Mathematical Analysis and Applications, Volume 17 (1967) no. 2, p. 248 | DOI:10.1016/0022-247x(67)90150-3
  • Lions, J. L. Optimisation pour certaines classes d'équations d'évolution non linéaires, Annali di Matematica Pura ed Applicata (1923 -), Volume 72 (1966) no. 1, p. 275 | DOI:10.1007/bf02414339

Cité par 68 documents. Sources : Crossref