[ -théorie et faisceaux de Hodge-Witt logarithmiques de schémas formels en caractéristique ]
Nous décrivons les -groups modulo d'une -algèbre régulière locale modulo les puissances d'un idéal approprié en termes des groupes de Hodge-Witt logarithmique, en démontrant des analogues pro des théorèmes de Geisser-Levine et Bloch-Kato-Gabber. Ceci est accompli en utilisant le théorème d'Hochschild-Kostant-Rosenberg pro en homologie cyclique topologique et le développement de la théorie des complexes de de Rham-Witt et de Hodge-Witt logarithmique sur les -schémas formels.
Des applications incluent les suivants : la partie infinitésimale de la conjecture de Lefschetz faible pour les groupes de Chow ; une version -adique de la conjecture de Kato-Saito que leurs groupes des classes de dimension supérieure Zariski et Nisnevich sont isomorphes ; des résultats de continuité en -théorie ; et des conditions, en termes des classes de cycles motiviques étales entières ou torsions, pour que les cycles algébriques sur un schéma formel admettent des déformations infinitésimales.
De plus, dans le cas où nous comparons la cohomologie étale de et la cohomologie fppf de sur un schéma formel, et ainsi présentons des conditions équivalentes pour que les fibres en droites déforment en termes de leurs classes dans chacune de ces cohomologies.
We describe the mod pro -groups of a regular local -algebra modulo powers of a suitable ideal , in terms of logarithmic Hodge-Witt groups, by proving pro analogues of the theorems of Geisser-Levine and Bloch-Kato-Gabber. This is achieved by combining the pro Hochschild-Kostant-Rosenberg theorem in topological cyclic homology with the development of the theory of de Rham-Witt complexes and logarithmic Hodge-Witt sheaves on formal schemes in characteristic .
Applications include the following: the infinitesimal part of the weak Lefschetz conjecture for Chow groups; a -adic version of Kato-Saito's conjecture that their Zariski and Nisnevich higher dimensional class groups are isomorphic; continuity results in -theory; and criteria, in terms of integral or torsion étale-motivic cycle classes, for algebraic cycles on formal schemes to admit infinitesimal deformations.
Moreover, in the case , we compare the étale cohomology of and the fppf cohomology of on a formal scheme, and thus present equivalent conditions for line bundles to deform in terms of their classes in either of these cohomologies.
@article{ASENS_2019__52_6_1537_0, author = {Morrow, Matthew}, title = {$K$-theory and logarithmic {Hodge-Witt} sheaves of formal schemes in characteristic~$p$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1537--1601}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {6}, year = {2019}, doi = {10.24033/asens.2415}, mrnumber = {4061020}, zbl = {1440.19004}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2415/} }
TY - JOUR AU - Morrow, Matthew TI - $K$-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic $p$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1537 EP - 1601 VL - 52 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2415/ DO - 10.24033/asens.2415 LA - en ID - ASENS_2019__52_6_1537_0 ER -
%0 Journal Article %A Morrow, Matthew %T $K$-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic $p$ %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1537-1601 %V 52 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2415/ %R 10.24033/asens.2415 %G en %F ASENS_2019__52_6_1537_0
Morrow, Matthew. $K$-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic $p$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1537-1601. doi : 10.24033/asens.2415. http://www.numdam.org/articles/10.24033/asens.2415/
, Grundl. math. Wissensch., 206, Springer, 1974, 341 pages | MR | Zbl
The cyclotomic trace and algebraic -theory of spaces, Invent. math., Volume 111 (1993), pp. 465-539 (ISSN: 0020-9910) | DOI | MR | Zbl
-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math., Volume 63 (1986), pp. 107-152 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
On the 2-typical de Rham-Witt complex, Doc. Math., Volume 13 (2008), pp. 413-452 (ISSN: 1431-0635) | DOI | MR | Zbl
, Algebraic -theory (Toronto, ON, 1996) (Fields Inst. Commun.), Volume 16, Amer. Math. Soc., 1997, pp. 31-94 | MR | Zbl
Tate conjecture for divisors (unpublished note)
On a result of Artin (2011) ( http://www.math.columbia.edu/~dejong/ )
Finite generation and continuity of topological Hochschild and cyclic homology, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017), pp. 201-238 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Milnor -theory of rings, higher Chow groups and applications, Invent. math., Volume 148 (2002), pp. 177-206 (ISSN: 0020-9910) | DOI | MR | Zbl
, Handbook of -theory. Vol. 1, 2, Springer, 2005, pp. 193-234 | DOI | MR | Zbl
On the -theory of complete regular local -algebras, Topology, Volume 45 (2006), pp. 475-493 (ISSN: 0040-9383) | DOI | MR | Zbl
On relative and bi-relative algebraic -theory of rings of finite characteristic, J. Amer. Math. Soc., Volume 24 (2011), pp. 29-49 (ISSN: 0894-0347) | DOI | MR | Zbl
, Algebraic -theory (Seattle, WA, 1997) (Proc. Sympos. Pure Math.), Volume 67, Amer. Math. Soc., 1999, pp. 41-87 | DOI | MR | Zbl
The -theory of fields in characteristic , Invent. math., Volume 139 (2000), pp. 459-493 (ISSN: 0020-9910) | DOI | MR | Zbl
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math., Volume 24 (1965), pp. 5-231 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, North-Holland Publishing Co.; Masson & Cie, Éditeur, 1968, 287 pages |, Dix exposés sur la cohomologie des schémas (Adv. Stud. Pure Math.), Volume 3, North-Holland, 1968, pp. 88-188 | MR | Zbl
Application d'Abel-Jacobi -adique et cycles algébriques, Duke Math. J., Volume 57 (1988), pp. 579-613 (ISSN: 0012-7094) | DOI | MR | Zbl
The big de Rham-Witt complex, Acta Math., Volume 214 (2015), pp. 135-207 (ISSN: 0001-5962) | DOI | MR | Zbl
On the -typical curves in Quillen's -theory, Acta Math., Volume 177 (1996), pp. 1-53 (ISSN: 0001-5962) | DOI | MR | Zbl
On the -theory of local fields, Ann. of Math., Volume 158 (2003), pp. 1-113 (ISSN: 0003-486X) | DOI | MR | Zbl
, Lecture Notes in Math., 239, Springer, 1971, 355 pages | MR | Zbl
Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup., Volume 12 (1979), pp. 501-661 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Algebraic -theory (Adv. Soviet Math.), Volume 4, Amer. Math. Soc., 1991, pp. 129-144 | MR | Zbl
Continuous étale cohomology, Math. Ann., Volume 280 (1988), pp. 207-245 (ISSN: 0025-5831) | DOI | MR | Zbl
Duality for relative logarithmic de Rham–Witt sheaves and wildly ramified class field theory over finite fields, Compos. Math., Volume 154 (2018), pp. 1306-1331 (ISSN: 0010-437X) | DOI | MR | Zbl
, Applications of algebraic -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) (Contemp. Math.), Volume 55, Amer. Math. Soc., 1986, pp. 241-253 | DOI | MR | Zbl
Milnor -theory of local rings with finite residue fields, J. Algebraic Geom., Volume 19 (2010), pp. 173-191 (ISSN: 1056-3911) | DOI | MR | Zbl
Ideles in higher dimension, Math. Res. Lett., Volume 18 (2011), pp. 699-713 (ISSN: 1073-2780) | DOI | MR | Zbl
Chow group of 0-cycles with modulus and higher-dimensional class field theory, Duke Math. J., Volume 165 (2016), pp. 2811-2897 (ISSN: 0012-7094) | DOI | MR | Zbl
, Applications of algebraic -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) (Contemp. Math.), Volume 55, Amer. Math. Soc., 1986, pp. 255-331 | DOI | MR | Zbl
Reciprocity sheaves, Compos. Math., Volume 152 (2016), pp. 1851-1898 (ISSN: 0010-437X) | DOI | MR | Zbl
On Noetherian rings of characteristic , Amer. J. Math., Volume 98 (1976), pp. 999-1013 (ISSN: 0002-9327) | DOI | MR | Zbl
De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 231-314 (ISSN: 1474-7480) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 8, Cambridge Univ. Press, 1989, 320 pages (ISBN: 0-521-36764-6) | MR | Zbl
Motivic cohomology and values of zeta functions, Compos. math., Volume 68 (1988) (ISSN: 0010-437X) | Numdam | MR | Zbl
-theory of one-dimensional rings via pro-excision, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 225-272 (ISSN: 1474-7480) | DOI | MR | Zbl
of localisations of local rings, J. Algebra, Volume 399 (2014), pp. 190-204 (ISSN: 0021-8693) | DOI | MR | Zbl
Pro cdh-descent for cyclic homology and -theory, J. Inst. Math. Jussieu, Volume 15 (2016), pp. 539-567 (ISSN: 1474-7480) | DOI | MR | Zbl
Pro unitality and pro excision in algebraic -theory and cyclic homology, J. reine angew. Math., Volume 736 (2018), pp. 95-139 (ISSN: 0075-4102) | DOI | MR | Zbl
A variational Tate conjecture in crystalline cohomology, J. Eur. Math. Soc., Volume 21 (2019), pp. 3467-3511 (ISSN: 1435-9855) | DOI | MR | Zbl
, Clay Mathematics Monographs, 2, Amer. Math. Soc.; Clay Mathematics Institute, MA, 2006, 216 pages (ISBN: 978-0-8218-3847-1; 0-8218-3847-4) | MR | Zbl
General Néron desingularization, Nagoya Math. J., Volume 100 (1985), pp. 97-126 (ISSN: 0027-7630) | DOI | MR | Zbl
General Néron desingularization and approximation, Nagoya Math. J., Volume 104 (1986), pp. 85-115 (ISSN: 0027-7630) | DOI | MR | Zbl
Weak Lefschetz for Chow groups: infinitesimal lifting, Homology Homotopy Appl., Volume 16 (2014), pp. 65-84 (ISSN: 1532-0073) | DOI | MR | Zbl
Homology of commutative rings (1968) (unpublished MIT notes)
Higher algebraic -theory. I, Algebraic -theory, I: Higher -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) (Lecture Notes in Math.), Volume 341 (1973), pp. 85-147 | MR | Zbl
Sur les foncteurs dérivés de . Applications, C. R. Acad. Sci. Paris, Volume 252 (1961), pp. 3702-3704 (ISSN: 0001-4036) | MR | Zbl
Chow groups with coefficients, Doc. Math., Volume 1 (1996), pp. No. 16, 319-393 (ISSN: 1431-0635) | DOI | MR | Zbl
Higher Chow groups with modulus and relative Milnor -theory, Trans. Amer. Math. Soc., Volume 370 (2018), pp. 987-1043 (ISSN: 0002-9947) | DOI | MR | Zbl
On logarithmic Hodge-Witt cohomology of regular schemes, J. Math. Sci. Univ. Tokyo, Volume 14 (2007), pp. 567-635 (ISSN: 1340-5705) | MR | Zbl
, The Grothendieck Festschrift, Vol. III (Progr. Math.), Volume 88, Birkhäuser, 1990, pp. 247-435 | DOI | MR | Zbl
Cité par Sources :