[L'inégalité de Miyaoka-Yau et l'uniformisation des modèles canoniques]
Nous établissons l'inégalité de Miyaoka-Yau en termes de classes de Chern orbifoldes pour le faisceau tangent d'une variété complexe projective de type général à singularités klt et diviseur canonique nef. Dans le cas d'égalité pour une variété à singularités terminales, nous établissons que le modèle canonique associé est un quotient de la boule unité par un groupe agissant discrètement.
We establish the Miyaoka-Yau inequality in terms of orbifold Chern classes for the tangent sheaf of any complex projective variety of general type with klt singularities and nef canonical divisor. In case equality is attained for a variety with at worst terminal singularities, we prove that the associated canonical model is the quotient of the unit ball by a discrete group action.
Keywords: Classification Theory, Uniformization, Ball Quotients, Minimal Models of General Type, Miyaoka-Yau inequality, Higgs Sheaves, KLT Singularities, Canonical Models, Stability, Hyperbolicity, Flat Vector Bundles.
Mot clés : Théorie de la classification, uniformisation, quotients de la boule, modèles minimaux de type général, inégalité de Miyaoka-Yau, singularités klt, modèles canoniques, stabilité, hyperbolicité, fibrés vectoriels plats.
@article{ASENS_2019__52_6_1487_0, author = {Greb, Daniel and Kebekus, Stefan and Peternell, Thomas and Taji, Behrouz}, title = {The {Miyaoka-Yau} inequality and uniformisation of canonical models}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1487--1535}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {6}, year = {2019}, doi = {10.24033/asens.2414}, mrnumber = {4061021}, zbl = {1452.32032}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2414/} }
TY - JOUR AU - Greb, Daniel AU - Kebekus, Stefan AU - Peternell, Thomas AU - Taji, Behrouz TI - The Miyaoka-Yau inequality and uniformisation of canonical models JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1487 EP - 1535 VL - 52 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2414/ DO - 10.24033/asens.2414 LA - en ID - ASENS_2019__52_6_1487_0 ER -
%0 Journal Article %A Greb, Daniel %A Kebekus, Stefan %A Peternell, Thomas %A Taji, Behrouz %T The Miyaoka-Yau inequality and uniformisation of canonical models %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1487-1535 %V 52 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2414/ %R 10.24033/asens.2414 %G en %F ASENS_2019__52_6_1487_0
Greb, Daniel; Kebekus, Stefan; Peternell, Thomas; Taji, Behrouz. The Miyaoka-Yau inequality and uniformisation of canonical models. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1487-1535. doi : 10.24033/asens.2414. http://www.numdam.org/articles/10.24033/asens.2414/
An elementary account of Selberg's lemma, Enseign. Math., Volume 33 (1987), pp. 269-273 (ISSN: 0013-8584) | MR | Zbl
On the quotient of an analytic manifold by a group of analytic homeomorphisms, Proc. Nat. Acad. Sci. U.S.A., Volume 40 (1954), pp. 804-808 (ISSN: 0027-8424) | DOI | MR | Zbl
Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | DOI | MR | Zbl
, De Gruyter Expositions in Mathematics, 16 | MR | Zbl
, Cambridge Studies in Advanced Math., 85, Cambridge Univ. Press, 2003, 430 pages (ISBN: 0-521-81466-9) | MR | Zbl
On compact, locally symmetric Kähler manifolds, Ann. of Math., Volume 71 (1960), pp. 472-507 (ISSN: 0003-486X) | DOI | MR | Zbl
, Complex differential geometry and nonlinear differential equations (Brunswick, Maine, 1984) (Contemp. Math.), Volume 49, Amer. Math. Soc., 1986, pp. 31-44 | DOI | MR | Zbl
Singular Kähler-Einstein metrics, J. Amer. Math. Soc., Volume 22 (2009), pp. 607-639 (ISSN: 0894-0347) | DOI | MR | Zbl
, Graduate Texts in Math., 150, Springer, 1995, 785 pages (ISBN: 0-387-94268-8; 0-387-94269-6) | DOI | MR | Zbl
, Geometry and analysis on manifolds (Katata/Kyoto, 1987) (Lecture Notes in Math.), Volume 1339, Springer, 1988, pp. 118-126 | DOI | MR | Zbl
, Algebraic geometry (Chicago, Ill., 1980) (Lecture Notes in Math.), Volume 862, Springer, 1981, pp. 26-92 | DOI | MR | Zbl
Restrictions of semistable bundles on projective varieties, Comment. Math. Helv., Volume 59 (1984), pp. 635-650 (ISSN: 0010-2571) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 2, Springer, 1998, 470 pages (ISBN: 3-540-62046-X; 0-387-98549-2) | DOI | MR | Zbl
Intersection theory on algebraic stacks and -varieties, J. Pure Appl. Algebra (Proceedings of the Luminy conference on algebraic K $K$ -theory (Luminy, 1983)), Volume 34 (1984), pp. 193-240 (ISSN: 0022-4049) | DOI | MR | Zbl
Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci., Volume 114 (2011), pp. 87-169 (an extended version with additional graphics is available as arXiv:1003.2913 ) (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016), pp. 1965-2004 (ISSN: 0012-7094) | DOI | MR | Zbl
Movable curves and semistable sheaves, Int. Math. Res. Not., Volume 2016 (2016), pp. 536-570 (ISSN: 1073-7928) | DOI | MR | Zbl
Harmonic metrics on Higgs sheaves and uniformization of varieties of general type, Math. Annalen (2019) (ISSN: 1432-1807) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 14, Springer, 1988, 272 pages (ISBN: 3-540-17300-5) | DOI | MR | Zbl
Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities, Math. Res. Lett., Volume 18 (2011), pp. 1259-1269 (ISSN: 1073-2780) | DOI | MR | Zbl
Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., Volume 4 (1960), pp. 5-228 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math., Volume 28 (1966), pp. 5-255 (ISSN: 0073-8301) | Numdam | MR | Zbl
Représentations linéaires et compactification profinie des groupes discrets, Manuscripta Math., Volume 2 (1970), pp. 375-396 (ISSN: 0025-2611) | DOI | MR | Zbl
Orbifold stability and Miyaoka-Yau inequality for minimal pairs (preprint arXiv:1611.05981 ) | MR
Semistability of the tangent sheaf of singular varieties, Algebr. Geom., Volume 3 (2016), pp. 508-542 | DOI | MR | Zbl
, Graduate Texts in Math., 52, Springer, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl
Stable reflexive sheaves, Math. Ann., Volume 254 (1980), pp. 121-176 (ISSN: 0025-5831) | DOI | MR | Zbl
, Cambridge Mathematical Library, Cambridge Univ. Press, 2010, 325 pages (ISBN: 978-0-521-13420-0) | DOI | MR | Zbl
Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann., Volume 150 (1963), pp. 327-360 (ISSN: 0025-5831) | DOI | MR | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, 1992, 175 pages (ISBN: 0-226-42582-7; 0-226-42583-5) | MR | Zbl
Abundance theorem for minimal threefolds, Invent. math., Volume 108 (1992), pp. 229-246 (ISSN: 0020-9910) | DOI | MR | Zbl
Pull-back morphisms for reflexive differential forms, Adv. Math., Volume 245 (2013), pp. 78-112 (ISSN: 0001-8708) | DOI | MR | Zbl
A fake projective plane with an order 7 automorphism, Topology, Volume 45 (2006), pp. 919-927 (ISSN: 0040-9383) | DOI | MR | Zbl
Quotients of fake projective planes, Geom. Topol., Volume 12 (2008), pp. 2497-2515 (ISSN: 1465-3060) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, 1998, 254 pages (ISBN: 0-521-63277-3) | DOI | MR | Zbl
A numerical characterization of ball quotients for normal surfaces with branch loci, Proc. Japan Acad. Ser. A Math. Sci., Volume 65 (1989), pp. 238-241 http://projecteuclid.org/euclid.pja/1195512773 (ISSN: 0386-2194) | DOI | MR | Zbl
, World Scientific Publishing Co. Pte. Ltd., 2005, 148 pages (ISBN: 981-256-496-9) |Einstein-Kähler -metrics on open Satake -surfaces with isolated quotient singularities, Math. Ann., Volume 272 (1985), pp. 385-398 (ISSN: 0025-5831) | DOI | MR | Zbl
, Grundl. math. Wiss., 318, Springer, 1998, 471 pages (ISBN: 3-540-63534-3) | DOI | MR | Zbl
, Astérisque, 211, 1992
, M. B. Porter Lectures, Princeton Univ. Press, 1995, 201 pages (ISBN: 0-691-04381-7) | DOI | MR | Zbl
, Algebraic geometry, de Gruyter, 2002, pp. 237-256 | DOI | MR | Zbl
Semistable sheaves in positive characteristic, Ann. of Math., Volume 159 (2004), pp. 251-276 (ISSN: 0003-486X) | DOI | MR | Zbl
Bogomolov's inequality for Higgs sheaves in positive characteristic, Invent. math., Volume 199 (2015), pp. 889-920 (ISSN: 0020-9910) | DOI | MR | Zbl
, Graduate Texts in Math., 202, Springer, 2011, 433 pages (ISBN: 978-1-4419-7939-1) | DOI | MR | Zbl
A characterization of finite quotients of abelian varieties, Int. Math. Res. Not., Volume 2018 (2018), pp. 292-319 (ISSN: 1073-7928) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 34, Springer, 1994, 292 pages (ISBN: 3-540-56963-4) | DOI | MR | Zbl
, Princeton Mathematical Series, 33, Princeton Univ. Press, N.J., 1980, 323 pages (ISBN: 0-691-08238-3) | MR | Zbl
Astérisque, Astérisque, 309, 2006, 117 pages (ISBN: 978-2-85629-226-6, ISSN: 0303-1179) | Numdam | MR | Zbl
, Arithmetic and geometry, Vol. II (Progr. Math.), Volume 36, Birkhäuser, 1983, pp. 271-328 | DOI | MR | Zbl
On the purity of branch loci in regular local rings, Illinois J. Math., Volume 3 (1959), pp. 328-333 http://projecteuclid.org/euclid.ijm/1255455255 (ISSN: 0019-2082) | DOI | MR | Zbl
Levi problem and semistable quotients, Complex Var. Elliptic Equ., Volume 58 (2013), pp. 1517-1525 (ISSN: 1747-6933) | DOI | MR | Zbl
Singular threefolds with numerically trivial first and second Chern classes, J. Algebraic Geom., Volume 3 (1994), pp. 265-281 (ISSN: 1056-3911) | MR | Zbl
Algebraic varieties without deformation and the Chow variety, J. Math. Soc. Japan, Volume 20 (1968), pp. 336-341 (ISSN: 0025-5645) | DOI | MR | Zbl
Local systems on proper algebraic -manifolds, Pure Appl. Math. Q., Volume 7 (2011), pp. 1675-1759 (ISSN: 1558-8599) | DOI | MR | Zbl
Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988), pp. 867-918 (ISSN: 0894-0347) | DOI | MR | Zbl
Nonabelian Hodge theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo (1991), pp. 747-756 | MR | Zbl
Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., Volume 75 (1992), pp. 5-95 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Recent topics in differential and analytic geometry (Adv. Stud. Pure Math.), Volume 18, Academic Press, 1990, pp. 417-433 | DOI | MR | Zbl
Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math., Volume 14 (2003), pp. 825-836 (ISSN: 0129-167X) | DOI | MR | Zbl
Stability of tangent bundles of minimal algebraic varieties, Topology, Volume 27 (1988), pp. 429-442 (ISSN: 0040-9383) | DOI | MR | Zbl
On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B, Volume 27 (2006), pp. 179-192 (ISSN: 0252-9599) | DOI | MR | Zbl
, Lie groups and Lie algebras, II (Encyclopaedia Math. Sci.), Volume 21, Springer, 2000 | MR
, Ergebn. Math. Grenzg., 30, Springer, 1995, 320 pages (ISBN: 3-540-59255-5) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 76, Cambridge Univ. Press, 2007, 322 pages (ISBN: 978-0-521-71801-1) | MR | Zbl
Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A., Volume 74 (1977), pp. 1798-1799 (ISSN: 0027-8424) | DOI | MR | Zbl
On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., Volume 44 (1958), pp. 791-796 (ISSN: 0027-8424) | DOI | MR | Zbl
On degenerate Monge-Ampère equations over closed Kähler manifolds, Int. Math. Res. Not., Volume 2006 (2006) (ISSN: 1073-7928) | DOI | MR | Zbl
Miyaoka-Yau inequality for minimal projective manifolds of general type, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 2749-2754 (ISSN: 0002-9939) | DOI | MR | Zbl
Cité par Sources :