[Un théorème de Leschetz pour les isocristaux surconvergents avec structure de Frobenius]
Nous montrons un théorème de Lefschetz pour les -isocristaux surconvergents sur des variétés lisses définies sur un corps fini. Nous en tirons plusieurs conséquences.
We show a Lefschetz theorem for irreducible overconvergent -isocrystals on smooth varieties defined over a finite field. We derive several consequences from it.
DOI : 10.24033/asens.2408
Keywords: Lefschetz theorem, overconvergent isocrystals, Frobenius structure.
Mot clés : Théorème de Leschetz, isocristaux surconvergents, structure de Frobenius.
@article{ASENS_2019__52_5_1243_0, author = {Abe, Tomoyuki and Esnault, H\'el\`ene}, title = {A {Lefschetz} theorem for overconvergent isocrystals with {Frobenius} structure}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1243--1264}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {5}, year = {2019}, doi = {10.24033/asens.2408}, mrnumber = {4057782}, zbl = {1440.14097}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2408/} }
TY - JOUR AU - Abe, Tomoyuki AU - Esnault, Hélène TI - A Lefschetz theorem for overconvergent isocrystals with Frobenius structure JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1243 EP - 1264 VL - 52 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2408/ DO - 10.24033/asens.2408 LA - en ID - ASENS_2019__52_5_1243_0 ER -
%0 Journal Article %A Abe, Tomoyuki %A Esnault, Hélène %T A Lefschetz theorem for overconvergent isocrystals with Frobenius structure %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1243-1264 %V 52 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2408/ %R 10.24033/asens.2408 %G en %F ASENS_2019__52_5_1243_0
Abe, Tomoyuki; Esnault, Hélène. A Lefschetz theorem for overconvergent isocrystals with Frobenius structure. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1243-1264. doi : 10.24033/asens.2408. http://www.numdam.org/articles/10.24033/asens.2408/
Langlands correspondence for isocrystals and the existence of crystalline companions for curves, J. Amer. Math. Soc., Volume 31 (2018), pp. 921-1057 (ISSN: 0894-0347) | DOI | MR | Zbl
Langlands program for -adic coefficients and the petits camarades conjecture, J. reine angew. Math., Volume 734 (2018), pp. 59-69 (ISSN: 0075-4102) | DOI | MR | Zbl
Theory of weights in -adic cohomology, American Journal of Mathematics, Volume 140 (2018), pp. 879-975 | DOI | MR | Zbl
Product formula for -adic epsilon factors, J. Inst. Math. Jussieu, Volume 14 (2015), pp. 275-377 (ISSN: 1474-7480) | DOI | MR | Zbl
Cohomologie rigide et cohomologie rigide à supports propres. Première partie (1996) (preprint IRMAR 96-03, https://perso.univ-rennes1.fr/pierre.berthelot/ )
Introduction to actions of algebraic groups (2009) (preprint CIRM Luminy https://www-fourier.ujf-grenoble.fr/~mbrion/notes.html )
-isocrystals and their monodromy groups, Ann. Sci. École Norm. Sup., Volume 25 (1992), pp. 429-464 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Finitude de l'extension de engendrée par des traces de Frobenius, en caractéristique finie, Mosc. Math. J., Volume 12 (2012), pp. 497-514 (ISSN: 1609-3321) | DOI | MR | Zbl
La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math., Volume 52 (1980), pp. 137-252 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Hodge cycles on abelian varieties, Hodge cycles, motives, and Shimura varieties (Deligne, P.; Milne, J. S.; Ogus, A.; Shih, K.-y., eds.) (Lecture Notes in Math.), Volume 900, Springer (1982), pp. 9-100 (ISBN: 3-540-11174-3) | DOI | MR | Zbl
Tannakian categories, Hodge cycles, motives, and Shimura varieties (Lecture Notes in Math.), Volume 900, Springer (1982), pp. 101-228 (ISBN: 3-540-11174-3) | DOI | MR | Zbl
On a conjecture of Deligne, Mosc. Math. J., Volume 12 (2012), pp. 515-542 (ISSN: 1609-3321) | DOI | MR | Zbl
A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Acta Math. Vietnam., Volume 37 (2012), pp. 531-562 (ISSN: 0251-4184) | MR | Zbl
Convergent isocrystals on simply connected varieties, Ann. Inst. Fourier, Volume 68 (2018), pp. 2109-2148 http://aif.cedram.org/item?id=AIF_2018__68_5_2109_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Étale and crystalline companions (preprint http://kskedlaya.org/papers/companions.pdf ) | MR
Semistable reduction for overconvergent -isocrystals. III. Local semistable reduction at monomial valuations, Compos. Math., Volume 145 (2009), pp. 143-172 (ISSN: 0010-437X) | DOI | MR | Zbl
Semistable reduction for overconvergent -isocrystals, IV: local semistable reduction at nonmonomial valuations, Compos. Math., Volume 147 (2011), pp. 467-523 (ISSN: 0010-437X) | DOI | MR | Zbl
Chtoucas de Drinfeld et correspondance de Langlands, Invent. math., Volume 147 (2002), pp. 1-241 (ISSN: 0020-9910) | DOI | MR | Zbl
Bertini theorems over finite fields, Ann. of Math., Volume 160 (2004), pp. 1099-1127 (ISSN: 0003-486X) | DOI | MR | Zbl
On logarithmic extension of overconvergent isocrystals, Math. Ann., Volume 348 (2010), pp. 467-512 (ISSN: 0025-5831) | DOI | MR | Zbl
Cut-by-curves criterion for the log extendability of overconvergent isocrystals, Math. Z., Volume 269 (2011), pp. 59-82 (ISSN: 0025-5874) | DOI | MR | Zbl
A note on the first rigid cohomology group for geometrically unibranch varieties, Rend. Semin. Mat. Univ. Padova, Volume 128 (2012), pp. 17-53 (ISSN: 0041-8994) | DOI | Numdam | MR | Zbl
Cité par Sources :