[La variance quantique de la surface modulaire]
Nous calculons la variance des observables des états quantiques du Laplacien sur la surface modulaire dans la limite semiclassique. Nous montrons que cette forme hermitienne est diagonalisée par les représentations irréductibles du quotient modulaire et sur chacune de ces représentations, elle est égale à la variance classique du flot géodésique après insertion d'une subtile valeur spécifique de la fonction correspondante.
The variance of observables of quantum states of the Laplacian on the modular surface is calculated in the semiclassical limit. It is shown that this hermitian form is diagonalized by the irreducible representations of the modular quotient and on each of these it is equal to the classical variance of the geodesic flow after the insertion of a subtle arithmetical special value of the corresponding -function.
DOI : 10.24033/asens.2406
Keywords: Quantum variance, modular surface, $L$-function.
Mot clés : Variance quantique, surface modulaire, fonction $L$.
@article{ASENS_2019__52_5_1155_0, author = {Sarnak, P. and Zhao, P.}, title = {The {Quantum} {Variance} of the {Modular} {Surface}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1155--1200}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {5}, year = {2019}, doi = {10.24033/asens.2406}, mrnumber = {4057780}, zbl = {1455.11076}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2406/} }
TY - JOUR AU - Sarnak, P. AU - Zhao, P. TI - The Quantum Variance of the Modular Surface JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1155 EP - 1200 VL - 52 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2406/ DO - 10.24033/asens.2406 LA - en ID - ASENS_2019__52_5_1155_0 ER -
%0 Journal Article %A Sarnak, P. %A Zhao, P. %T The Quantum Variance of the Modular Surface %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1155-1200 %V 52 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2406/ %R 10.24033/asens.2406 %G en %F ASENS_2019__52_5_1155_0
Sarnak, P.; Zhao, P. The Quantum Variance of the Modular Surface. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1155-1200. doi : 10.24033/asens.2406. http://www.numdam.org/articles/10.24033/asens.2406/
Patterson-Sullivan distributions and quantum ergodicity, Ann. Henri Poincaré, Volume 8 (2007), pp. 361-426 (ISSN: 1424-0637) | DOI | MR | Zbl
Intertwining the geodesic flow and the Schrödinger group on hyperbolic surfaces, Math. Ann., Volume 353 (2012), pp. 1103-1156 (ISSN: 0025-5831) | DOI | MR | Zbl
, McGraw-Hill, 1954 |Periods, subconvexity of -functions and representation theory, J. Differential Geom., Volume 70 (2005), pp. 129-141 http://projecteuclid.org/euclid.jdg/1143572016 (ISSN: 0022-040X) | MR | Zbl
, Lecture Notes in Math., 1083, Springer, 1984, 184 pages (ISBN: 3-540-13864-1) | DOI | MR | Zbl
et al. Approach to ergodicity in quantum wave functions, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, Volume 52 (1995), pp. 5893-5903
, McGraw-Hill Book Company-Toronto-London, 1954, 451 pages |Standard archimedean integrals for (preprint http://www.math.umn.edu/~garrett/ )
Decomposition of Eisenstein series: Rankin triple products, Ann. of Math., Volume 125 (1987), pp. 209-235 (ISSN: 0003-486X) | DOI | MR | Zbl
Heights and the central critical values of triple product -functions, Compos. math., Volume 81 (1992), pp. 143-209 (ISSN: 0010-437X) | Numdam | MR | Zbl
, Academic Press, 1965
Nodal domains of Maass forms I, Geom. Funct. Anal., Volume 23 (2013), pp. 1515-1568 (ISSN: 1016-443X) | DOI | MR | Zbl
, Lecture Notes in Math., 548, Springer, 1976, 516 pages | MR | Zbl
The central critical value of a triple product -function, Ann. of Math., Volume 133 (1991), pp. 605-672 (ISSN: 0003-486X) | DOI | MR | Zbl
Coefficients of Maass forms and the Siegel zero, Ann. of Math., Volume 140 (1994), pp. 161-181 (ISSN: 0003-486X) | DOI | MR | Zbl
Trilinear forms and the central values of triple product -functions, Duke Math. J., Volume 145 (2008), pp. 281-307 (ISSN: 0012-7094) | DOI | MR | Zbl
Small eigenvalues of Laplacian for , Acta Arith., Volume 56 (1990), pp. 65-82 (ISSN: 0065-1036) | DOI | MR | Zbl
, Graduate Studies in Math., 17, Amer. Math. Soc., 1997, 259 pages (ISBN: 0-8218-0777-3) | DOI | MR | Zbl
QUE for Eisenstein Series on , Annales de l'Institut Fourier, Volume 44 (1994), pp. 1477-1504 | Numdam | MR | Zbl
Equidistribution of cusp forms on , Ann. Inst. Fourier, Volume 47 (1997), pp. 967-984 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
The spectral mean square of Hecke -functions on the critical line, Publ. Inst. Math. (Beograd), Volume 76(90) (2004), pp. 41-55 (ISSN: 0350-1302) | DOI | MR | Zbl
Zeros of families of automorphic -functions close to 1, Pacific J. Math., Volume 207 (2002), pp. 411-431 (ISSN: 0030-8730) | DOI | MR | Zbl
, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., 1994, pp. 393-410 | MR | Zbl
Petersson's Conjecture for Cusp Forms of Weight Zero and Linnik's Conjecture, Math. USSR Sbornik, Volume 29 (1981), pp. 299-342 | MR | Zbl
Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math., Volume 163 (2006), pp. 165-219 (ISSN: 0003-486X) | DOI | MR | Zbl
The variance of arithmetic measures associated to closed geodesics on the modular surface, J. Mod. Dyn., Volume 3 (2009), pp. 271-309 (ISSN: 1930-5311) | DOI | MR | Zbl
Quantum variance for Hecke eigenforms, Ann. Sci. École Norm. Sup., Volume 37 (2004), pp. 769-799 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Quantum ergodicity of eigenfunctions on , Inst. Hautes Études Sci. Publ. Math., Volume 81 (1995), pp. 207-237 (ISSN: 0073-8301) | Numdam | MR | Zbl
Values of symmetric square -functions at 1, J. reine angew. Math., Volume 506 (1999), pp. 215-235 (ISSN: 0075-4102) | DOI | MR | Zbl
Subconvexity for Rankin-Selberg -functions of Maass forms, Geom. Funct. Anal., Volume 12 (2002), pp. 1296-1323 (ISSN: 1016-443X) | DOI | MR | Zbl
The subconvexity problem for , Publications Math. IHÉS, Volume 111 (2010), pp. 171-271 | DOI | Numdam | MR | Zbl
The central limit theorem for geodesic flows on -dimensional manifolds of negative curvature, Israel J. Math., Volume 16 (1973), pp. 181-197 (ISSN: 0021-2172) | DOI | MR | Zbl
The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, Volume 7 (1987), pp. 267-288 (ISSN: 0143-3857) | DOI | MR | Zbl
, The Schur Lectures, 2003 , Springer, 1989, 711 pages (ISBN: 3-540-18389-2) |
Quantum unique ergodicity for , Ann. of Math., Volume 172 (2010), pp. 1529-1538 (ISSN: 0003-486X) | MR | Zbl
Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math., Volume 172 (2010), pp. 989-1094 (ISSN: 0003-486X) | DOI | MR | Zbl
Central Value of Rankin Triple L-function for Unramified Maass Cusp Forms (2004)
Trilinear forms and subconvexity of the triple product -function (preprint http://www.math.columbia.edu/~woodbury/research/ ) | MR
, L-functions and automorphic forms (Contrib. Math. Comput. Sci.), Volume 10, Springer, 2017, pp. 275-298 | DOI | MR | Zbl
Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987), pp. 919-941 (ISSN: 0012-7094) | DOI | MR | Zbl
Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal., Volume 97 (1991), pp. 1-49 (ISSN: 0022-1236) | DOI | MR | Zbl
On the rate of quantum ergodicity. I. Upper bounds, Comm. Math. Phys., Volume 160 (1994), pp. 81-92 http://projecteuclid.org/euclid.cmp/1104269516 (ISSN: 0010-3616) | DOI | MR | Zbl
Quantum variance of Maass-Hecke cusp forms, Comm. Math. Phys., Volume 297 (2010), pp. 475-514 (ISSN: 0010-3616) | DOI | MR | Zbl
Cité par Sources :