[Ensembles modèles à entropie positive dans des schémas par coupe et projection]
On construit des ensembles de Delone euclidiens obtenus par coupe et projection de sorte que l'entropie des systèmes dynamiques associés soit strictement positive. La construction permet d'utiliser une fenêtre propre ou d'intérieur vide. Dans une construction probabiliste, pour presque tout paramètre, l'entropie est proportionnelle à la mesure de la frontière de la fenêtre.
We construct model sets arising from cut and project schemes in Euclidean spaces whose associated Delone dynamical systems have positive topological entropy. The construction works both with windows that are proper and with windows that have empty interior. In a probabilistic construction with randomly generated windows, the entropy almost surely turns out to be proportional to the measure of the boundary of the window.
@article{ASENS_2019__52_5_1073_0, author = {J\"ager, Tobias and Lenz, Daniel and Oertel, Christian}, title = {Model sets with positive entropy in {Euclidean} cut and project schemes}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1073--1106}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {5}, year = {2019}, doi = {10.24033/asens.2403}, mrnumber = {4057777}, zbl = {1450.37014}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2403/} }
TY - JOUR AU - Jäger, Tobias AU - Lenz, Daniel AU - Oertel, Christian TI - Model sets with positive entropy in Euclidean cut and project schemes JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1073 EP - 1106 VL - 52 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2403/ DO - 10.24033/asens.2403 LA - en ID - ASENS_2019__52_5_1073_0 ER -
%0 Journal Article %A Jäger, Tobias %A Lenz, Daniel %A Oertel, Christian %T Model sets with positive entropy in Euclidean cut and project schemes %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1073-1106 %V 52 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2403/ %R 10.24033/asens.2403 %G en %F ASENS_2019__52_5_1073_0
Jäger, Tobias; Lenz, Daniel; Oertel, Christian. Model sets with positive entropy in Euclidean cut and project schemes. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1073-1106. doi : 10.24033/asens.2403. http://www.numdam.org/articles/10.24033/asens.2403/
, North-Holland Mathematics Studies, 153 | MR | Zbl
, Encyclopedia of Mathematics and its Applications, 149, Cambridge Univ. Press, 2013, 531 pages (ISBN: 978-0-521-86991-1) | DOI | MR | Zbl
On weak model sets of extremal density, Indag. Math. (N.S.), Volume 28 (2017), pp. 3-31 (ISSN: 0019-3577) | DOI | MR | Zbl
Toeplitz flows and model sets, Bull. Lond. Math. Soc., Volume 48 (2016), pp. 691-698 (ISSN: 0024-6093) | DOI | MR | Zbl
Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 1867-1893 (ISSN: 0143-3857) | DOI | MR | Zbl
Characterization of model sets by dynamical systems, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 341-382 (ISSN: 0143-3857) | DOI | MR | Zbl
Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies, Lett. Math. Phys., Volume 82 (2007), pp. 61-77 (ISSN: 0377-9017) | DOI | MR | Zbl
Weighted Dirac combs with pure point diffraction, J. reine angew. Math., Volume 573 (2004), pp. 61-94 (ISSN: 0075-4102) | DOI | MR | Zbl
, Discrete Math., Volume 221, 2000, pp. 3-42 (Selected papers in honor of Ludwig Danzer) (ISSN: 0012-365X) | DOI | MR | Zbl
Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., Volume 153 (1971), pp. 401-414 (ISSN: 0002-9947) | DOI | MR | Zbl
Quasicrystals and almost periodicity, Commun. Math. Phys., Volume 255 (2005), pp. 651-681 | MR | Zbl
Dynamical properties of -free lattice points, Acta Phys. Polon. A, Volume 126 (2014), pp. 482-485 | DOI
On diffraction by aperiodic structures, Comm. Math. Phys., Volume 169 (1995), pp. 25-43 http://projecteuclid.org/euclid.cmp/1104272610 (ISSN: 0010-3616) | DOI | MR | Zbl
On pattern entropy of weak model sets, Discrete Comput. Geom., Volume 54 (2015), pp. 741-757 (ISSN: 0179-5376) | DOI | MR | Zbl
, Encyclopedia of Mathematics and its Applications, 54, Cambridge Univ. Press, 1995, 802 pages (ISBN: 0-521-34187-6) | DOI | MR | Zbl
(Kellendonk, J.; Lenz, D.; Savinien, J., eds.), Progress in Math., 309, Birkhäuser, 2015, 428 pages (ISBN: 978-3-0348-0902-3; 978-3-0348-0903-0) | DOI | MR
Dynamics on the graph of the torus parametrisation (preprint arXiv:1511.06137 ) | MR
Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom., Volume 21 (1999), pp. 161-191 (ISSN: 0179-5376) | DOI | MR | Zbl
Stationary processes and pure point diffraction, Ergodic Theory Dynam. Systems, Volume 37 (2017), pp. 2597-2642 (ISSN: 0143-3857) | DOI | MR | Zbl
Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, Volume 3 (2002), pp. 1003-1018 (ISSN: 1424-0637) | DOI | MR | Zbl
Delone dynamical systems and associated random operators, Conference Proceedings, Constanta (Romania), July 2-7, 2001 (Combes, J.-M.; Cuntz, J.; Elliott, G.; Nenciu, G.; Siedentop, H.; Stratila, S., eds.), Theta Foundation (2001) | Zbl
, North-Holland Mathematical Library, 2, North-Holland Publishing Co.-London; American Elsevier Publishing Co., 1972, 274 pages | MR | Zbl
Model sets: A survey, From Quasicrystals to More Complex Systems (Axel, F.; Dénoyer, F.; Gazeau, J.-P., eds.), Springer (2000), pp. 145-166 | DOI
Uniform distribution in model sets, Canad. Math. Bull., Volume 45 (2002), pp. 123-130 (ISSN: 0008-4395) | DOI | MR | Zbl
, The mathematics of long-range aperiodic order (Waterloo, ON, 1995) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 489, Kluwer Acad. Publ., 1997, pp. 403-441 | DOI | MR | Zbl
Entropy and diffraction of the -free points in -dimensional lattices, Discrete Comput. Geom., Volume 50 (2013), pp. 39-68 (ISSN: 0179-5376) | DOI | MR | Zbl
Pure point diffraction and Poisson summation, Ann. Henri Poincaré, Volume 18 (2017), pp. 3903-3931 (ISSN: 1424-0637) | DOI | MR | Zbl
, Directions in mathematical quasicrystals (CRM Monogr. Ser.), Volume 13, Amer. Math. Soc., 2000, pp. 143-159 | DOI | MR | Zbl
Almost periodic measures and long-range order in Meyer sets, Discrete Comput. Geom., Volume 33 (2005), pp. 483-505 (ISSN: 0179-5376) | DOI | MR | Zbl
A variational characterization of the topological entropy of continuous groups of transformations. The case of actions, Mat. Zametki, Volume 49 (1991), p. 114-123, 160 (ISSN: 0025-567X) | DOI | MR | Zbl
Cité par Sources :