Uniqueness of axisymmetric viscous flows originating from circular vortex filaments
[Unicité des écoulements visqueux axisymétriques issus de filaments tourbillonnaires circulaires]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 1025-1071.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous montrons que les équations de Navier-Stokes incompressibles dans 3 possèdent une unique solution axisymétrique sans swirl lorsque le tourbillon initial est un filament circulaire dont le nombre de Reynolds de circulation peut être arbitrairement grand. L'accent est mis ici sur l'unicité, car l'existence a déjà été établie dans [10]. La difficulté principale à surmonter est que, pour de tels écoulements, le régime non linéaire ne peut être décrit par une théorie de perturbation standard, même pour des temps petits. Les solutions que nous construisons sont des exemples typiques d'anneaux tourbillonnaires visqueux, et peuvent être considérées comme l'analogue axisymétrique des tourbillons autosimilaires de Lamb-Oseen que l'on rencontre dans les écoulements plans. Notre méthode fournit le terme dominant d'un développement asymptotique de la solution à temps petits, la viscosité étant fixée, et peut en principe se généraliser à des ordres plus élevés et donner ainsi une justification complète, dans le cadre axisymétrique, des développements asymptotiques formels que l'on trouve dans la littérature [7].

The incompressible Navier-Stokes equations in 3 are shown to admit a unique axisymmetric solution without swirl if the initial vorticity is a circular vortex filament with arbitrarily large circulation Reynolds number. The emphasis is on uniqueness, as existence has already been established in [10]. The main difficulty which has to be overcome is that the nonlinear regime for such flows is outside of applicability of standard perturbation theory, even for short times. The solutions we consider are archetypal examples of viscous vortex rings, and can be thought of as axisymmetric analogs of the self-similar Lamb-Oseen vortices in two-dimensional flows. Our method provides the leading term in a fixed-viscosity short-time asymptotic expansion of the solution, and may in principle be extended so as to give a rigorous justification, in the axisymmetric situation, of higher-order formal asymptotic expansions that can be found in the literature [7].

Publié le :
DOI : 10.24033/asens.2402
Classification : 35Q30, 35B07, 35A02, 76D05, 76D17, 76N10.
Keywords: Équations de Navier-Stokes, filaments de tourbillon, solutions axisymétriques, unicitÃé
Mot clés : Navier-Stokes equations, vortex filaments, axially symmetric solutions, uniqueness
@article{ASENS_2019__52_4_1025_0,
     author = {Gallay, Thierry and \v{S}ver\'ak, Vladim{\'\i}r},
     title = {Uniqueness of axisymmetric viscous flows  originating from circular  vortex filaments},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1025--1071},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {4},
     year = {2019},
     doi = {10.24033/asens.2402},
     mrnumber = {4038451},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2402/}
}
TY  - JOUR
AU  - Gallay, Thierry
AU  - Šverák, Vladimír
TI  - Uniqueness of axisymmetric viscous flows  originating from circular  vortex filaments
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 1025
EP  - 1071
VL  - 52
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2402/
DO  - 10.24033/asens.2402
LA  - en
ID  - ASENS_2019__52_4_1025_0
ER  - 
%0 Journal Article
%A Gallay, Thierry
%A Šverák, Vladimír
%T Uniqueness of axisymmetric viscous flows  originating from circular  vortex filaments
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 1025-1071
%V 52
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2402/
%R 10.24033/asens.2402
%G en
%F ASENS_2019__52_4_1025_0
Gallay, Thierry; Šverák, Vladimír. Uniqueness of axisymmetric viscous flows  originating from circular  vortex filaments. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 1025-1071. doi : 10.24033/asens.2402. http://www.numdam.org/articles/10.24033/asens.2402/

Abidi, H. Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes, Bull. Sci. Math., Volume 132 (2008), pp. 592-624 (ISSN: 0007-4497) | DOI | MR | Zbl

Aronson, D. G. Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 890-896 (ISSN: 0002-9904) | DOI | MR | Zbl

Ambrosetti, A.; Struwe, M. Existence of steady vortex rings in an ideal fluid, Arch. Rational Mech. Anal., Volume 108 (1989), pp. 97-109 (ISSN: 0003-9527) | DOI | MR | Zbl

Benedetto, D.; Caglioti, E.; Marchioro, C. On the motion of a vortex ring with a sharply concentrated vorticity, Math. Methods Appl. Sci., Volume 23 (2000), pp. 147-168 (ISSN: 0170-4214) | DOI | MR | Zbl

Billingsley, P., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, 1999, 277 pages (ISBN: 0-471-19745-9) | DOI | MR | Zbl

Bourgain, J.; Pavlović, N. Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233-2247 (ISSN: 0022-1236) | DOI | MR | Zbl

Carlen, E. A.; Loss, M. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation, Duke Math. J., Volume 81 (1995), pp. 135-157 (ISSN: 0012-7094) | DOI | MR | Zbl

Callegari, A. J.; Ting, L. Motion of a curved vortex filament with decaying vortical core and axial velocity, SIAM J. Appl. Math., Volume 35 (1978), pp. 148-175 (ISSN: 0036-1399) | DOI | MR | Zbl

Fraenkel, L. E.; Berger, M. S. A global theory of steady vortex rings in an ideal fluid, Acta Math., Volume 132 (1974), pp. 13-51 (ISSN: 0001-5962) | DOI | MR | Zbl

Fraenkel, L. E. On steady vortex rings of small cross-section in an ideal fluid, Proc. Roy. Soc. London A, Volume 316 (1970), pp. 29-62 | DOI | Zbl

Fabes, E. B.; Stroock, D. W. A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal., Volume 96 (1986), pp. 327-338 (ISSN: 0003-9527) | DOI | MR | Zbl

Friedman, A.; Turkington, B. Vortex rings: existence and asymptotic estimates, Trans. Amer. Math. Soc., Volume 268 (1981), pp. 1-37 (ISSN: 0002-9947) | DOI | MR | Zbl

Friedlander, S.; Vicol, V. Higher regularity of Hölder continuous solutions of parabolic equations with singular drift velocities, J. Math. Fluid Mech., Volume 14 (2012), pp. 255-266 (ISSN: 1422-6928) | DOI | MR | Zbl

Feng, H.; Šverák, V. On the Cauchy problem for axi-symmetric vortex rings, Arch. Ration. Mech. Anal., Volume 215 (2015), pp. 89-123 (ISSN: 0003-9527) | DOI | MR | Zbl

Germain, P. The second iterate for the Navier-Stokes equation, J. Funct. Anal., Volume 255 (2008), pp. 2248-2264 (ISSN: 0022-1236) | DOI | MR | Zbl

Gallagher, I.; Gallay, T. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity, Math. Ann., Volume 332 (2005), pp. 287-327 (ISSN: 0025-5831) | DOI | MR | Zbl

Gallagher, I.; Gallay, T.; Lions, P.-L. On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity, Math. Nachr., Volume 278 (2005), pp. 1665-1672 (ISSN: 0025-584X) | DOI | MR | Zbl

Giga, Y.; Miyakawa, T. Navier-Stokes flow in 𝐑3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, Volume 14 (1989), pp. 577-618 (ISSN: 0360-5302) | DOI | MR | Zbl

Gallay, T.; Wayne, C. E. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on 𝐑2 , Arch. Ration. Mech. Anal., Volume 163 (2002), pp. 209-258 (ISSN: 0003-9527) | DOI | MR | Zbl

Gallay, T.; Wayne, C. E. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys., Volume 255 (2005), pp. 97-129 (ISSN: 0010-3616) | DOI | MR | Zbl

Guillod, J.; Šverák, V. Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces (preprint arXiv:1704.00560 ) | MR

Gallay, T.; Šverák, V. Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations, Confluentes Mathematici, Volume 7 (2015), pp. 67-92 | DOI | MR

Jia, H.; Šverák, V. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?, J. Funct. Anal., Volume 268 (2015), pp. 3734-3766 (ISSN: 0022-1236) | DOI | MR

Koch, G.; Nadirashvili, N.; Seregin, G. A.; Šverák, V. Liouville theorems for the Navier-Stokes equations and applications, Acta Math., Volume 203 (2009), pp. 83-105 (ISSN: 0001-5962) | DOI | MR | Zbl

Koch, H.; Tataru, D. Well-posedness for the Navier-Stokes equations, Adv. Math., Volume 157 (2001), pp. 22-35 (ISSN: 0001-8708) | DOI | MR | Zbl

Ladyženskaja, O. A. Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 7 (1968), pp. 155-177 | MR

Leonardi, S.; Málek, J.; Nečas, J.; Pokorný, M. On axially symmetric flows in 𝐑3 , Z. Anal. Anwendungen, Volume 18 (1999), pp. 639-649 (ISSN: 0232-2064) | DOI | MR | Zbl

Osada, H. Diffusion processes with generators of generalized divergence form, J. Math. Kyoto Univ., Volume 27 (1987), pp. 597-619 (ISSN: 0023-608X) | DOI | MR | Zbl

Rudin, W., McGraw-Hill, 1974, 452 pages | MR | Zbl

Seregin, G.; Silvestre, L.; Šverák, V.; Zlatoš, A. On divergence-free drifts, J. Differential Equations, Volume 252 (2012), pp. 505-540 (ISSN: 0022-0396) | DOI | MR | Zbl

Stein, E. M., Princeton Mathematical Series, 43, Princeton Univ. Press, 1993, 695 pages (ISBN: 0-691-03216-5) | MR | Zbl

Ukhovskii, M. R.; Iudovich, V. I. Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., Volume 32 (1968), pp. 52-61 (ISSN: 0021-8928) | DOI | MR | Zbl

Cité par Sources :